精英家教網 > 初中數學 > 題目詳情

如圖,已知∠AOB, OE平分∠AOC, OF平分∠BOC.

(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度數;

(2)猜想∠EOF與∠AOB的數量關系;

(3)若∠AOB+∠EOF=156°,則∠EOF是多少度?

 

【答案】

(1)45°;(2)∠EOF=∠AOB;(3)52°.

【解析】

試題分析:(1)先求出∠AOC的度數,再根據角平分線的定義求出∠EOC與∠COF的度數,然后相減即可得解;

(2)設∠COF=x,∠EOB=y,先用x,y表示出∠EOF,再用x,y表示出∠AOB,然后得出兩者的關系;

(3)根據(2)的規(guī)律,∠EOF的度數等于∠AOB的一半,進行求解即可.

試題解析:(1)∵∠AOB是直角,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠EOC=∠AOC=×150°=75°,∠COF=∠BOC=×60°=30°,∴∠EOF=∠EOC﹣∠COF=75°﹣30°=45°;

(2)設∠COF=x,∠EOB=y,∵OE平分∠AOC,OF平分∠BOC,∴∠BOF= x,∠AOE=∠EOC=2x+y,∴∠EOF=x+y,∠AOB=2x+2y,∴∠EOF=∠AOB;

(3)∵∠EOF=∠AOB,∴∠AOB=2∠EOF,∵∠AOB+∠EOF=156°,∴3∠EOF=156°,∴∠EOF=52°.

考點:角的計算.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、(1)如圖,已知∠AOB和C、D兩點,用直尺和圓規(guī)作一點P,使PC=PD,且P到OA、OB兩邊距離相等.

(2)用三角尺作圖在如圖的方格紙中,
①作△ABC關于直線l1對稱的△A1B1C1;再作△A1B1C1關于直線l2對稱的△A2B2C2;再作△A2B2C2關于直線l3對稱的△A3B3C3
②△ABC與△A3B3C3成軸對稱嗎?如果成,請畫出對稱軸;如果不成,把△A3B3C3怎樣平移可以與△ABC成軸對稱?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠AOB是直角,∠AOC是銳角,ON平分∠AOC,OM平分∠BOC,則∠MON是( 。精英家教網
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能計算

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度數;
(2)若∠AOC=x°,∠EOF=y°.則請用x的代數式來表示y;
(3)如果∠AOC+∠EOF=156°,則∠EOF是多少度?

查看答案和解析>>

科目:初中數學 來源: 題型:

尺規(guī)作圖:
如圖,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用寫作法,保留作圖痕跡).并證明你所作圖的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知∠AOB=x(0°<x<180°),OC平分∠AOB,點N為OB上一個定點.通過畫圖可以知道:當∠AOB=45°時,在射線OC上存在點P,使△ONP成為等腰三角形,且符合條件的點有三個,即P1(頂點為P2),P2(頂點為0),P3(頂點為N).
試問:當∠AOB分別為銳角、直角、鈍角時,在射線OC上使△ONP成為等腰三角形的點P是否仍然存在三個?請分別畫出簡圖并加以說明.

查看答案和解析>>

同步練習冊答案