【題目】如圖,ABC是等邊三角形,DEAB分別交BC、AC于點DE,過點EEFDE,交線段BC的延長線于點F。

1)求證:CECF;

2)若BDCE,AB8,求線段DF的長。

【答案】1)見解析(212

【解析】

1)根據(jù)ABC是等邊三角形得到∠ABC=A=ACB=60°,根據(jù)DEAB得到∠DEC=EDC=60°,故∠CEF=30°,∠F=90°-EDC=30°,則∠F=CEF,問題得證;

2)先證明DCE為等邊三角形,根據(jù)BDCE=CD,故BD=BC,CF=CE=CD=BC=AB,故可求解.

1)∵ABC是等邊三角形

∴∠ABC=A=ACB=60°,

DEAB

∴∠DEC=EDC=60°,

EFDE,

∴∠CEF=90°-∠DEC30°,∠F=90°-EDC=30°,

∴∠F=CEF

CECF

2)∵∠DEC=EDC=60°

DCE為等邊三角形,

BDCE=CD,

BD=BC

CF=CE=CD=BC=AB=6,

DF=CF+DC=12.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某人駕車從地出發(fā)在一條筆直的南北方向上來回行駛,向北行駛為正,向南行駛為負,行駛的路程情況如下(單位:千米)

該人在完成上述次行車后在地的哪一側?距地多少千米?

如果這輛車每行駛千米的耗油量為升,這一天共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AC的垂直平分線MN分別交ABACD,E.若AE=5,BCD的周長17,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,在ABC中,∠ACB=90°,ACBC,直線l過點C,點A,B在直線l同側,BDl,AEl,垂足分別為D,E.求證:AEC≌△CDB

(2)如圖2,AEAB,且AEAB,BCCD,且BCCD,利用(1)中的結論,請按照圖中所標注的數(shù)據(jù)計算圖中實線所圍成的圖形的面積S=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著我市農產品整體品牌形象勝一籌!”的推出,現(xiàn)代農業(yè)得到了更快發(fā)展.某農場為擴大生產建設了一批新型鋼管裝配式大棚,如圖1.線段AB,BD分別表示大棚的墻高和跨度,AC表示保溫板的長.已知墻高AB2米,墻面與保溫板所成的角∠BAC=150°,在點D處測得A點、C點的仰角分別為9°,15.6°,如圖2.求保溫板AC的長是多少米?(精確到0.1米)

(參考數(shù)據(jù):≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在坐標平面內,點O是坐標原點,A0,6)、B2,0),且∠OBA60°,將OAB沿直線AB翻折,得到CAB,點O與點C對應。

1)求點C的坐標;

2)動點F從點O出發(fā),以2個單位長度/秒的速度沿折線O—A—C向終點C運動,設FOB的面積為SS≠0),點F的運動時間為t秒,求St的關系式,并直接寫出t的取值范圍;

3)在(2)的條件下,過點Bx軸垂線,交AC于點E,在點F的運動過程中,當t為何值時,BEF是以BE為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,GBC的中點,過A、D、G三點的圓O與邊AB、CD分別交于點E、點F,給出下列說法:(1)ACBD的交點是圓O的圓心;(2)AFDE的交點是圓O的圓心;(3)BC與圓O相切,其中正確說法的個數(shù)是( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結論:①2a﹣b=0;(a+c)2<b2;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知關于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

同步練習冊答案