函數(shù)y=-
3
16
x2+3的圖象與x軸正半軸交于點A,與y軸交于點B,過點A、B分別作y軸、x軸的平行線交直線y=kx于點M、N.
(1)用k表示S△OBN:S△MAO的值.
(2)當S△OBN=
1
4
S△MAO時,求圖象過點M、N、B的二次函數(shù)的解析式.
(1)由y=-
3
16
x2+3知:點A(4,0)、B(0,3);
當x=4時,y=kx=4k,即:M(4,4k);
當y=3時,kx=3,x=
3
k
,即:N(
3
k
,3);
∴AM=4|k|、BN=
3
|k|

∴S△OBN=
1
2
OB•BN=
1
2
•3•
3
|k|
=
9
2|k|
,S△MAO=
1
2
•OA•AM=
1
2
•4•4|k|=8|k|;
S△OBN
S△MAO
=
9
2|k|
8|k|
=
9
16k2


(2)由S△OBN=
1
4
S△MAO,得:
S△OBN
S△MAO
=
1
4
,即:
9
16k2
=
1
4
,解得:k=±
3
2
;
當k=
3
2
時,M(4,6)、N(2,3);
設拋物線的解析式為:y=ax2+bx+c,有:
16a+4b+c=6
4a+2b+c=3
c=3
,解得:
a=
3
8
b=-
3
4
c=3

∴拋物線的解析式:y=
3
8
x2-
3
4
x+3;
當k=-
3
2
時,M(4,-6)、N(-2,3),同理可求得拋物線的解析式為:y=-
3
8
x2-
3
4
x+3;
綜上,過點M、N、B的二次函數(shù)的解析式為:y=
3
8
x2-
3
4
x+3或y=-
3
8
x2-
3
4
x+3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與直線y=kx+b交于A(3,0)、C(0,3)兩點,拋物線的頂點坐標為Q(2,-1).點P是該拋物線上一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PDy軸,交直線AC于點D.
(1)求該拋物線的解析式;
(2)設P點的橫坐標為t,PD的長度為l,求l與t之間的函數(shù)關系式,并求l取最大值時,點P的坐標.
(3)在問題(2)的結論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=-x2+bx+c經(jīng)過直線y=-x+3與坐標軸的兩個交點A、B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)點M為拋物線上的一個動點,求使得△ABM的面積與△ABD的面積相等的點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(-3,0)和點B(2,0).直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F,與拋物線在第二象限交于點G.
(1)求拋物線的解析式;
(2)連接BE,求h為何值時,△BDE的面積最大;
(3)已知一定點M(-2,0).問:是否存在這樣的直線y=h,使△OMF是等腰三角形?若存在,請求出h的值和點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,Rt△ABC中,∠A=90°,tanB=
3
4
,點P在線段AB上運動,點Q、R分別在線段BC、AC上,且使得四邊形APQR是矩形.設AP的長為x,矩形APQR的面積為y,已知y是x的函數(shù),其圖象是過點(12,36)的拋物線的一部分(如圖2所示).

(1)求AB的長;
(2)當AP為何值時,矩形APQR的面積最大,并求出最大值.
為了解決這個問題,孔明和研究性學習小組的同學作了如下討論:
張明:圖2中的拋物線過點(12,36)在圖1中表示什么呢?
李明:因為拋物線上的點(x,y)是表示圖1中AP的長與矩形APQR面積的對應關系,那么,(12,36)表示當AP=12時,AP的長與矩形APQR面積的對應關系.
趙明:對,我知道縱坐標36是什么意思了!
孔明:哦,這樣就可以算出AB,這個問題就可以解決了.請根據(jù)上述對話,幫他們解答這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,長方形雞場的一邊靠墻(墻長18m),墻對面有一個2m寬的門,另三邊用竹籬笆圍成,籬笆總長33m,
(1)若雞場面積為150m2,求雞場的長和寬各為多少m?
(2)求圍成的雞場的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,某地一城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各安裝一盞路燈,兩燈間的水平距離CD=8米,
(1)求這個門洞的高度______;
(2)現(xiàn)有體寬均約為0.5水,身高約為1.6米的20名同學想要手挽手成一排橫向通過該城門,請你測算,他們能否通過?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

涪陵榨菜是重慶市農(nóng)村經(jīng)濟中產(chǎn)銷規(guī)模最大、品牌知名度最高、輻射帶動能力最強的特色支柱產(chǎn)業(yè).某知名榨菜企業(yè)為順應市場需求推出了“五味榨菜”禮盒,成本為20元/盒.年銷售量y(萬盒)與售價x(元/盒)之間滿足一次函數(shù)關系,其圖象如圖所示.
(1)結合圖象求y與x之間的函數(shù)關系;
(2)求“五味榨菜”禮盒的年獲利w(萬元)與x之間的函數(shù)關系,并求當售價為多少元時可以獲得最大利潤,最大利潤是多少萬元?
(3)去年,公司一直按照(2)中獲得最大利潤時的售價進行銷售,今年在保持售價不變的基礎上,公司發(fā)力品牌營銷,決定拿出部分資金進行廣告宣傳.經(jīng)調(diào)查發(fā)現(xiàn):①每年有11萬盒產(chǎn)品供給固定客戶,其余產(chǎn)品全部被潛在客房購買;②若廣告投入為a萬元,則潛在客戶的購買量將是去年購買量的m倍,則m=-
1
900
(a-30)2+2
;③受公司生產(chǎn)規(guī)模及資金限制,公司的年產(chǎn)量不超過28萬盒,廣告投入不超過32萬元.問公司在廣告上投入多少資金可以使公司獲得最大利潤,最大利潤為多少萬元?(利潤=總銷售額-總成本-廣告費)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用長8m的鋁合金條制成如圖形狀的矩形窗框,使窗戶的透光面積最大,那么這個窗戶的最大透光面積是( 。
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

同步練習冊答案