【題目】如圖,已知A(﹣4,0),B(0,4),現(xiàn)以A點(diǎn)為位似中心,相似比為9:4,將OB向右側(cè)放大,B點(diǎn)的對(duì)應(yīng)點(diǎn)為C.

(1)求C點(diǎn)坐標(biāo)及直線BC的解析式;

(2)一拋物線經(jīng)過(guò)B、C兩點(diǎn),且頂點(diǎn)落在x軸正半軸上,求該拋物線的解析式并畫(huà)出函數(shù)圖象;

(3)現(xiàn)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交與另一點(diǎn)P,請(qǐng)找出拋物線上所有滿足到直線AB距離點(diǎn)P.

【答案】(1)過(guò)C點(diǎn)向x軸作垂線,垂足為D,

由位似圖形性質(zhì)可知:△ABO∽△ACD, ∴

由已知,可知:

.∴C點(diǎn)坐標(biāo)為

設(shè)直線BC的解析為: y=kx+4,將(5,9)代入得

5k+4=9,解得k=1.

所以y=x+4.

(2)因?yàn)閽佄锞頂點(diǎn)在x軸正半軸,所以設(shè)頂點(diǎn)坐標(biāo)為(h,0),則設(shè)拋物線解析式為

y=a(x-h(huán))2.

將(0,4),(5,9)代入函數(shù)解析式得.解得或者.

∴解得拋物線解析式為

又∵的頂點(diǎn)在x軸負(fù)半軸上,不合題意,故舍去.

∴滿足條件的拋物線解析式為

(準(zhǔn)確畫(huà)出函數(shù)圖象)

(3) 將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交與另一點(diǎn)P,設(shè)P到 直線AB的距離為h,

故P點(diǎn)應(yīng)在與直線AB平行,且相距的上下兩條平行直線上.

由平行線的性質(zhì)可得:兩條平行直線與y軸的交點(diǎn)到直線BC的距離也為

如圖,設(shè)與y軸交于E點(diǎn),過(guò)E作EF⊥BC于F點(diǎn),

在Rt△BEF中,

.∴可以求得直線與y軸交點(diǎn)坐標(biāo)為同理可求得直線與y軸交點(diǎn)坐標(biāo)為

∴兩直線解析式;

根據(jù)題意列出方程組: ⑴;⑵

∴解得:;;;

∴滿足條件的點(diǎn)P有四個(gè),它們分別是,,

【解析】(1)利用位似圖形的性質(zhì)及相似比,可得OD,OC的長(zhǎng)度,進(jìn)而得到C點(diǎn)的坐標(biāo).利用待定系數(shù)法求出直線BC的函數(shù)解析式.

(2)頂點(diǎn)落在x軸正半軸上,所以拋物線設(shè)出頂點(diǎn)式,然后把B,C兩點(diǎn)代入求得二次函數(shù)解析式,最后將不符合條件的舍去

(3)到直線AB的距離直線有兩條.根據(jù)直線AB的解析式可求得其與y軸的夾角為45°,從而得到RtEPB為等腰直角三角形,得到斜邊BE=6.從而得到直線的解析式.兩直線的解析式分別于二次函數(shù)解析式組成方程組,就可以求得點(diǎn)P坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線ACBD相交于點(diǎn)O,∠CAB=∠ACB,過(guò)點(diǎn)BBEABAC于點(diǎn)E

(1)求證:ACBD;

(2)若AB=14,cos∠CAB=,求線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A,Dx軸的正半軸上,點(diǎn)Cy軸的正半軸上,點(diǎn)FAB上,點(diǎn)B、E在反比例函數(shù)y(x0)的圖象上,正方形ADEF的面積為9,且BFAF,則k值為(  )

A. 15 B. C. D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為足球飛行路線的對(duì)稱軸是直線;足球被踢出時(shí)落地;足球被踢出時(shí),距離地面的高度是.

其中正確結(jié)論的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角ACB中,∠ACB=90°,O是斜邊AB的中點(diǎn),點(diǎn)D、E分別在直角邊AC、BC上,且∠DOE=90°,DEOC于點(diǎn)P,則下列結(jié)論

(1) AOD≌△COE;(2) OE=OD;(3) EOP∽△CDP.

其中正確的結(jié)論是(  )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)鋼筋三角架三邊長(zhǎng)分別為20cm,50cm,60cm,現(xiàn)要再做一個(gè)與其相似的鋼筋三角架,而只有長(zhǎng)為30cm50cm的兩根鋼筋,要求以其中的一根為一邊,從另一根截下兩段(允許有余料)作為另兩邊,則不同的截法有( ).

A. 一種 B. 兩種 C. 三種 D. 四種

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家海洋局將中國(guó)釣魚(yú)島最高峰命名為高華峰,并對(duì)釣魚(yú)島進(jìn)行常態(tài)化立體巡航.如圖1,在一次巡航過(guò)程中,巡航飛機(jī)飛行高度為2001米,在點(diǎn)A測(cè)得高華峰頂F點(diǎn)的俯角為30°,保持方向不變前進(jìn)1200米到達(dá)B點(diǎn)后測(cè)得F點(diǎn)俯角為45°,如圖2.請(qǐng)據(jù)此計(jì)算釣魚(yú)島的最高海拔高度多少米.(結(jié)果保留整數(shù),參考數(shù)值:=1.732=1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3,頂點(diǎn)為E,該拋物線與x軸交于A,B兩點(diǎn),與y軸交子點(diǎn)C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點(diǎn)D.求∠DBC﹣∠CBE=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案