【題目】二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,下列結(jié)論a0; =1;b24ac0;當(dāng)x1yx的增大而減小;當(dāng)﹣1x3,y0其中正確的是_____.(只填序號)

【答案】②⑤

【解析】圖像開口向上,所以a0,所以①說法錯誤;拋物線與x軸的交點(diǎn)坐標(biāo)分別是(-1,0)和(3,0),所以對稱軸-==1,所以②說法正確;根據(jù)圖像可得,二次函數(shù)y=ax2+bx+ca≠0)與x軸有兩個交點(diǎn),所以一元二次方程ax2+bx+c=0a≠0)有兩個不相等的實(shí)數(shù)根,所以b24ac0,所以③說法錯誤;當(dāng)x2時,y隨著x的增大而增大,所以④說法錯誤;通過圖像不難得出當(dāng)﹣1x3時,y0,所以⑤說法正確.正確的說法有②⑤.

故答案為②⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】構(gòu)造圖形解題,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無措,難以下手,這時,如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過構(gòu)造適合的幾何圖形,將會得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由

S四邊形ABCD=SABC+SADE+SABE,化簡得:

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:

RtABC,使∠ABC=90°,BC=AC=,再在斜邊AB上截取BD,則AD的長就是該方程的一個正根(如實(shí)例二圖)

請根據(jù)以上閱讀材料回答下面的問題:

(1)如圖1,請利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是

(2)如圖2,若2-8是關(guān)于x的方程x2+6x16的兩個根,按照實(shí)例二的方式構(gòu)造RtABC,連接CD,求CD的長;

(3)xy,z都為正數(shù),且x2+y2z2,請用構(gòu)造圖形的方法求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在面積為3ABC中,AB=3,∠BAC=45°,點(diǎn)DBC邊上一點(diǎn).

1)若ADBC邊上的中線,求AD的長;

2)點(diǎn)D關(guān)于直線ABAC的對稱點(diǎn)分別為點(diǎn)MN,求AN的長度的最小值;

3)若PABC內(nèi)的一點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為158160,154158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( 。

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙O,ADBC,垂足為D

1)如圖1 ,BDDC,求∠B的度數(shù);

2)如圖2,BEAC,垂足為E,BEAD于點(diǎn)F,過點(diǎn)BBGAD交⊙O于點(diǎn)GAB邊上取一點(diǎn)H,使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x+4,

1)用配方法確定它的頂點(diǎn)坐標(biāo)、對稱軸;

2x取何值時,yx增大而減。

3x取何值時,拋物線在x軸上方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中,錯誤結(jié)論有( );①三角形三條高(或高的延長線)的交點(diǎn)不在三角形的內(nèi)部,就在三角形的外部;②一個多邊形的邊數(shù)每增加一條,這個多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個外角等于任意兩個內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長三角形的三邊,所得的三角形三個外角中銳角最多有一個

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等腰三角形,頂角BAC=<600,D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時針旋轉(zhuǎn)到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF

(1)求證:BE=CD

(2)若ADBC,試判斷四邊形BDFE的形狀,并給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)是(a,0),點(diǎn)B的坐標(biāo)是(b,0),其中a,b滿足.

(1)填空:a=______b=_______;

(2)軸負(fù)半軸上有一點(diǎn)M(0,m),三角形ABM的面積為4.

①求m的值;

②將線段AM沿x軸正方向平移,使得A的對應(yīng)點(diǎn)為B,M的對應(yīng)點(diǎn)為N. 若點(diǎn)P為線段AB上的任意一點(diǎn)(不與A,B重合),試寫出∠MPN,∠PMA,∠PNB之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案