【題目】為弘揚(yáng)中華民族傳統(tǒng)文化,某校舉辦了古詩文大賽,并為獲獎同學(xué)購買簽字筆和筆記本作為獎品.1支簽字筆和2個筆記本共8.5元,2支簽字筆和3個筆記本共13.5元.

1)求簽字筆和筆記本的單價分別是多少元?

2)為了激發(fā)學(xué)生的學(xué)習(xí)熱情,學(xué)校決定給每名獲獎同學(xué)再購買一本文學(xué)類圖書,如果給每名獲獎同學(xué)都買一本圖書,需要花費(fèi)720元;書店出臺如下促銷方案:購買圖書總數(shù)超過50本可以享受8折優(yōu)惠.學(xué)校如果多買12本,則可以享受優(yōu)惠且所花錢數(shù)與原來相同.問學(xué)校獲獎的同學(xué)有多少人?

【答案】1)簽字筆的單價為1.5元,筆記本的單價為3.5元;(2)學(xué)校獲獎的同學(xué)有48人.

【解析】

1)分析題意,等量關(guān)系為:1支簽字筆價錢+2×筆記本單價=8.5元;簽字筆單價+3×筆記本單價=13.5元,列方程組求解;(2)分析題意,等量關(guān)系為:費(fèi)用720÷人數(shù)=(費(fèi)用720÷0.8÷(人數(shù)+12),列出方程,檢驗答案是否符合題意.

1)設(shè)簽字筆的單價為x元,筆記本的單價為y元.

則可列方程組,

解得

答:簽字筆的單價為1.5元,筆記本的單價為3.5元.

2)設(shè)學(xué)校獲獎的同學(xué)有z人.

則可列方程,

解得z=48

經(jīng)檢驗,z=48符合題意.

答:學(xué)校獲獎的同學(xué)有48人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1y12x+3與直線l2y2kx1交于A點(diǎn),A點(diǎn)橫坐標(biāo)為﹣1,且直線l1x軸交于B點(diǎn),與y軸交于D點(diǎn),直線l2y軸交于C點(diǎn).

1)求出A、B、C、D點(diǎn)坐標(biāo);

2)求出直線l2的解析式;

3)連結(jié)BC,求出SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關(guān)于BC所在直線的對稱圖形得到A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)BAA′C的重心,求的值.

(3)應(yīng)用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點(diǎn)A在直線l2上,有一邊的長是BC倍.將ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到A'B'C,A′C所在直線交l2于點(diǎn)D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b與二次函數(shù)y2=ax2的圖象交于A、B兩點(diǎn).

(1)利用圖中條件求兩個函數(shù)的解析式;

(2)根據(jù)圖象寫出使y1>y2x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 ABC中,AB=AC BAC=90°,直角∠ EPF的頂點(diǎn)PBC中點(diǎn),兩邊PEPF分別交AB、AC于點(diǎn)E、F,給出以下四個結(jié)論:①AE=CF;②△ EPF是等腰直角三角形; 2S四邊形AEPF=S ABC; BE+CF=EF.當(dāng)∠ EPF ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(點(diǎn)EA、B重合).上述結(jié)論中始終正確的有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.

(1)求證:AB是O的切線;

(2)若CF=4,DF=,求⊙O的半徑r及sinB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線經(jīng)過點(diǎn)M1,3)和N3,5

1)試判斷該拋物線與x軸交點(diǎn)的情況;

2)平移這條拋物線,使平移后的拋物線經(jīng)過點(diǎn)A﹣20),且與y軸交于點(diǎn)B,同時滿足以A、O、B為頂點(diǎn)的三角形是等腰直角三角形,請你寫出平移過程,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎摩托車從B地到A地,到達(dá)A地后立即按原路返回.如圖是甲、乙兩人離B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:

(1)直接寫出y,y與x之間的函數(shù)關(guān)系式(不寫過程);

(2)①求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實際意義;

根據(jù)圖象判斷,x取何值時,y>y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形紙片ABCD沿AC剪開,得到△ABC和△ACD.

(1)將圖1中的△ABC繞點(diǎn)A順時針旋轉(zhuǎn)∠α,使∠α=∠BAC,得到圖2所示的△ABC′,過點(diǎn)C′C′EAC,交DC的延長線于點(diǎn)E,試判斷四邊形ACEC′的形狀,并說明理由.

(2)若將圖1中的△ABC繞點(diǎn)A順時針旋轉(zhuǎn),使B,A,D在同一條直線上,得到圖3所示的△ABC′,連接CC′,過點(diǎn)AAFCC′于點(diǎn)F,延長AF至點(diǎn)G,使FGAF,連接CGC′G,試判斷四邊形ACGC′的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案