【題目】如圖1,拋物線與軸交于,兩點,過點的直線分別與軸及拋物線交于點
(1)求直線和拋物線的表達式
(2)動點從點出發(fā),在軸上沿的方向以每秒1個單位長度的速度向左勻速運動,設運動時間為秒,當為何值時,為直角三角形?請直接寫出所有滿足條件的的值.
(3)如圖2,將直線沿軸向下平移4個單位后,與軸,軸分別交于,兩點,在拋物線的對稱軸上是否存在點,在直線上是否存在點,使的值最?若存在,求出其最小值及點,的坐標,若不存在,請說明理由.
【答案】(1),;(2)或3或4或12;(3)存在,,,最小值
【解析】
(1)利用待定系數(shù)法求解即可;
(2)先求點D坐標,再求點C坐標,然后分類討論即可;
(3)通過做對稱點將折線轉(zhuǎn)化成兩點間距離,用兩點之間線段最短來解答即可.
解:(1)把代入,
得
解得,
∴拋物線解析式為,
∵過點B的直線,
∴把代入,解得,
∴直線解析式為
(2)聯(lián)立,解得或,所以,
直線:與軸交于點,則,
根據(jù)題意可知線段,則點
則,,
因為為直角二角形
①若,則,
化簡得:,或
②若,則,
化簡得
③若,則,
化簡得
綜上所述,或3或4或12,滿足條件
(3)在拋物線上取點的對稱點,過點作于點,交拋物線對稱軸于點,過點作于點,此時最小
拋物線的對稱軸為直線,則的對稱點為,
直線的解析式為
因為,設直線:,
將代入得,則直線:,
聯(lián)立,解得,則,
聯(lián)立,解得,則,
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
在數(shù)學活動課上,老師出示了這樣一個問題:如圖1,在中,,,,點為邊上的任意一點.將沿過點的直線折疊,使點落在斜邊上的點處.問是否存在是直角三角形?若不存在,請說明理由;若存在,求出此時的長度.
探究展示:勤奮小組很快找到了點、的位置.
如圖2,作的角平分線交于點,此時沿所在的直線折疊,點恰好在上,且,所以是直角三角形.
問題解決:
(1)按勤奮小組的這種折疊方式,的長度為 .
(2/span>)創(chuàng)新小組看完勤奮小組的折疊方法后,發(fā)現(xiàn)還有另一種折疊方法,請在圖3中畫出來.
(3)在(2)的條件下,求出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是某浴室花灑實景圖,圖2是該花灑的側(cè)面示意圖.已知活動調(diào)節(jié)點B可以上下調(diào)整高度,離地面CD的距離BC=160cm.設花灑臂與墻面的夾角為α,可以扭動花灑臂調(diào)整角度,且花灑臂長AB=30cm.假設水柱AE垂直AB直線噴射,小華在離墻面距離CD=120cm處淋浴.
(1)當α=30°時,水柱正好落在小華的頭頂上,求小華的身高DE.
(2)如果小華要洗腳,需要調(diào)整水柱AE,使點E與點D重合,調(diào)整的方式有兩種:
①其他條件不變,只要把活動調(diào)節(jié)點B向下移動即可,移動的距離BF與小華的身高DE有什么數(shù)量關(guān)系?直接寫出你的結(jié)論;
②活動調(diào)節(jié)點B不動,只要調(diào)整α的大小,在圖3中,試求α的度數(shù).
(參考數(shù)據(jù):≈1.73,sin8.6°≈0.15,sin36.9°≈0.60,tan36.9°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點,與y軸交于點C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的兩根為﹣8、2.
(1)求二次函數(shù)的解析式;
(2)直線l繞點A以AB為起始位置順時針旋轉(zhuǎn)到AC位置停止,l與線段BC交于點D,P是AD的中點.
①求點P的運動路程;
②如圖2,過點D作DE垂直x軸于點E,作DF⊥AC所在直線于點F,連結(jié)PE、PF,在l運動過程中,∠EPF的大小是否改變?請說明理由;
(3)在(2)的條件下,連結(jié)EF,求△PEF周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)為創(chuàng)建《國家義務教育優(yōu)質(zhì)均衡發(fā)展區(qū)》,自2016年以來加大了教育經(jīng)費的投入,2016年該區(qū)投入教育經(jīng)費9000萬元,2018年投入教育經(jīng)費12960萬元,假設該區(qū)這兩年投入教育經(jīng)費的年平均增長率相同
(1)求這兩年該區(qū)投入教育經(jīng)費的年平均增長率
(2)若該區(qū)教育經(jīng)費的投入還將保持相同的年平均增長率,請你預算2019年該區(qū)投入教育經(jīng)費多少萬元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.下列敘述正確的是( 。
A. 小球的飛行高度不能達到15m
B. 小球的飛行高度可以達到25m
C. 小球從飛出到落地要用時4s
D. 小球飛出1s時的飛行高度為10m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個圖案中涂有陰影的小正方形個數(shù)為( )
A.8073B.8072C.8071D.8070
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)對寧波市相關(guān)的市場物價調(diào)研,某批發(fā)市場內(nèi)甲種水果的銷售利潤y1(千元)與進貨量x(噸)近似滿足函數(shù)關(guān)系,乙種水果的銷售利潤(千元)與進貨量x(噸)之間的函數(shù)關(guān)系近似于二次函數(shù),函數(shù)圖象如圖所示.
(1)求出與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)如果該市場準備進甲、乙兩種水果共8噸,設乙水果的進貨量為t噸,寫出這兩種水果所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進多少噸時,獲得的銷售利潤之和最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:
①當m=-3時,函數(shù)圖象的頂點坐標是(,);
②當m>0時,函數(shù)圖象截x軸所得的線段長度大于;
③當m<0時,函數(shù)在時,y隨x的增大而減小;
④當m≠0時,函數(shù)圖象經(jīng)過x軸上一個定點.
其中正確的結(jié)論有________ .(只需填寫序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com