【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ, BP=CQ.

(1)求證:△ABP≌△ACQ;

(2)請判斷△APQ是什么形狀的三角形?試說明理由.

【答案】(1)見解析;(2)見解析.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得ABAC,再根據(jù)SAS證明ABP≌△ACQ;

(2)根據(jù)全等三角形的性質(zhì)得到APAQ ,再證∠PAQ = 60°,從而得出APQ是等邊三角形.

證明:(1)∵△ABC為等邊三角形, AB=ACBAC=60°,

ABPACQ中, ∴△ABP≌△ACQ(SAS),

(2)∵△ABP≌△ACQ, ∴∠BAP=CAQ,AP=AQ,

∵∠BAP+CAP=60°, ∴∠PAQ=CAQ+CAP=60°,

∴△APQ是等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CDAB邊上的高.動點P從點A出發(fā),沿著△ABC的三條邊逆時針走一圈回到A點,速度為2cm/s,設(shè)運動時間為t s.

(1)求CD的長;

(2)t為何值時,△ACP是等腰三角形?

(3)MBC上一動點,NAB上一動點,是否存在M,N使得AM+MN 的值最?如果有,請直接寫出最小值,如果沒有,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC=12厘米, BC=8厘米,點DAB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動;當(dāng)點Q的運動速度為下列哪個值時,能夠在某一時刻使BPDCQP全等(

A. 23厘米/ B. 4厘米/ C. 3厘米/ D. 46厘米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在矩形ABCD中,AB=4cm,BC=7cm,

(1)F在邊BC上,且 BF=3,若點P從點A出發(fā),以每秒1cm的速度沿A→D→C→F運動,設(shè)點P運動的時間為t秒,求當(dāng)t為何值時,AFP為等腰三角形?

(2)如圖2,將長方形ABCD折疊,折痕為MN,點A的對應(yīng)點A落在線段BC上,當(dāng)點ABC上移動時,M、N也隨之移動,若限定點M、N分別在線段AB、AD上移動,則點A在線段BC上可移動的最大距離是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出△ABC關(guān)于y軸對稱的△ABlCl;

(2)點P在x軸上,且點P到點B與點C的距離之和最小,直接寫出點P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計了一種測量方案,具體測量情況如下:
如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A,E,C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB.(結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c過A,B兩點,且與x軸交于另一點C.

(1)求b、c的值;
(2)如圖1,點D為AC的中點,點E在線段BD上,且BE=2ED,連接CE并延長交拋物線于點M,求點M的坐標(biāo);

(3)將直線AB繞點A按逆時針方向旋轉(zhuǎn)15°后交y軸于點G,連接CG,如圖2,P為△ACG內(nèi)一點,連接PA,PC,PG,分別以AP,AG為邊,在他們的左側(cè)作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案