如圖,O是正方形ABCD的對角線BD上一點,⊙O與AB,BC都相切,點E,F(xiàn)分別在邊AD,DC上,現(xiàn)將△DEF沿EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處,若DE=2,則正方形ABCD的邊長是______.
∵沿EF折疊D和O重合,EF與⊙O切于M,
∴OM=MD,OE=ED=2,DF=OF,
∵四邊形ABCD是正方形,
∴∠EDO=45°=∠FDO=∠DOF,∠ADF=∠EOF=90°,
∴∠DFO=90°,
即四邊形EOFD是正方形,
DF=DE=OF=2,
在△DFO中,由勾股定理得:DO=
22+22
=2
2
,
∴OM=
2
,
延長FO交AB于Q,延長EO交BC于R,
則OQ⊥AB,OR⊥BC,
則⊙O切AB于Q,切BC于R,
∴OQ=OR,
∴∠OQB=∠ORB=∠QBR=90°,
∴四邊形BQOR是正方形,
∴BQ=OQ=OR=BR=OM=
2
,
∵四邊形AQOE是矩形,
∴AQ=EO=2,
∴正方形ABCD的邊長是2+
2

故答案為:2+
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,PAB為割線且PA=AB,PO交⊙O于C,若OC=3,OP=5,則AB的長為( 。
A.
10
B.2
2
C.
6
D.
5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,直線BC與⊙O相切于點B,過A作ADOC交⊙O于點D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AD=2,直徑AB=6,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB、AC、BD是⊙O的切線,P、C、D為切點,如果AB=5,AC=3,則BD的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,AC為⊙O的直徑且PA⊥AC,BC是⊙O的一條弦,直線PB交直線AC于點D,
DB
DP
=
DC
DO
=
2
3

(1)求證:直線PB是⊙O的切線;
(2)求cos∠BCA的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA為⊙O的切線,A為切點,PO交⊙O于點B,PA=4,OA=3,則OP=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AC為⊙O直徑,B為AC延長線上的一點,BD交⊙O于點D,∠BAD=∠B=30°
(1)求證:BD是⊙O的切線;
(2)請問:BC與BA有什么數(shù)量關系?寫出這個關系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,PA與⊙O相切于點A,線段OP與弦AC垂直并相交于點D,OP與弧AC相交于點E,連接BC.
(1)求證:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
3
5
,求PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

直角坐標系中,以P(4,2)為圓心,a為半徑的圓與坐標軸恰好有三個公共點,則a的值為______.

查看答案和解析>>

同步練習冊答案