【題目】如圖,點(diǎn)MAB的中點(diǎn),點(diǎn)PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MDME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

【答案】35

【解析】

根據(jù)題意知,陰影部分的面積等于兩個正方形的面積減去兩個三角形的面積,由給出的條件即可求出陰影部分的面積

AP=a,BP=b

∴正方形APCD的面積S1= a2 正方形PBEF的面積S2=b2

∵點(diǎn)MAB的中點(diǎn)

AM=MB=AB=(a+b)

SADM=AM×DA=×(a+b) ×a=(a2+ab)

SMBE=MB×BE=×(a+b) ×b=(b2+ab)

S陰影= S1+ S2- SADM- SMBE

= a2+ b2-(a2+ab)-(b2+ab)

= a2+ b2- ab

=(a+b)2-2ab

=×102-2×20

=75-40

=35.

故答案為:35.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:
①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )

A.②④⑤⑥
B.①③⑤⑥
C.②③④⑥
D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC,AD平分∠BACBC于點(diǎn)D,點(diǎn)M,N分別是ADAB上的動點(diǎn),當(dāng)SABC=6,AC=4,BM+MN的最小值等于_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC=90°,D是直線AB上的點(diǎn),AD=BC.

(1)如圖1,過點(diǎn)A作AF⊥AB,并截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點(diǎn),且CE=BD,直線AE、CD相交于點(diǎn)P,∠APD的度數(shù)是一個固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列代數(shù)式書寫規(guī)范的是( 。

A. a÷3B. a8C. 5aD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使ABDC重合,得到折痕MN,將紙片展平;再一次折疊,使點(diǎn)D落到MN上的點(diǎn)F處,折痕APMNE;延長PFABG.求證:

(1)AFG≌△AFP;

(2)APG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,是一個長為 2m,寬為 2n 的長方形,沿圖中虛線用剪刀將其均分成四個完全相同的小長方形,然后按圖 2 的形狀拼圖.

(1) 2 中的圖形陰影部分的邊長為 ;(用含 m、n 的代數(shù)式表示)

(2)請你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: ;方法二:

(3)觀察圖 2,請寫出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個頂

點(diǎn)在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個動點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案