如圖1,在平面直角坐標系xoy中,Rt△AOB的斜邊OB在x軸上,其中∠ABO=30°,OB=4.
(1)直接寫出,Rt△AOB的內(nèi)心P的坐標;
(2)如圖2,若將Rt△AOB繞其直角頂點A順時針旋轉(zhuǎn)α度(0°<α<90°),得到Rt△ACD,直角邊AD與x軸相交于點N,直角邊AC與y軸相交于點M,連接MN.設(shè)△MON的面積為S△MON,△AOB的面積為S△AOB,以點M為圓心,MO為半徑作⊙M,
①當(dāng)直線AD與⊙M相切時,試探求S△MON與S△AOB之間的關(guān)系.
②當(dāng)S△MON=
14
S△AOB時,試判斷直線AD與⊙M的位置關(guān)系,并說明理由.
分析:(1)利用直角三角形內(nèi)切圓半徑求法直接得出即可;
(2)①利用切線的性質(zhì)得出△AMN∽△ACD,進而得出
S△MON
S△ACD
=(
AN
AD
2=(
2
2
3
2=
1
3
;
②根據(jù)相似三角形的性質(zhì)得出MO與BN的關(guān)系得出,AM的長,進而得出直線AD與⊙M的位置關(guān)系.
解答:解:(1)r=
2+2
3
-4
2
=
3
-1
則P的坐標是:(3-
3
,
3
-1);

(2)①當(dāng)AD與⊙M相切時,過M作MN⊥AO于點H,則MH=OM,此時,點H與點A重合.
∴OM=MA
∵∠MOA=α
∠AON=90°-α,∠OAN=90°-α
∠ONA=2α
∴α=30°
∵MN∥CD
∴△AMN∽△ACD
S△MON
S△ACD
=(
AN
AD
2=(
2
2
3
2=
1
3
;
②∵S△AMN=
1
4
S△AOB=
1
4
S△ACD,
1
2
OM•ON
1
2
×2×2
3
=
1
4
,
∵由(2)不難得出:∠MAO=∠BAN,∠AOM=∠ABO,
∴△OAM∽△ANB,
MO
BN
=
AO
AB
=
2
2
3
=
1
3
,
∵設(shè)OM=x,BN=
3
x,NO=4-
3
x,
1
2
• x(4-
3
x)
1
2
×2×2
3
=
1
4

解得:x1=
3
,x2=
3
3
,
∴當(dāng)x=
3
時,OM=
3
,NO=1,
∴MN=2,∴AM=1,
∵d<r,
∴直線AD與⊙M相交,
當(dāng)x=
3
3
時,MO=
3
3
,NO=3,
∴NM=
9+
1
3
=
2
21
3
,
∴AM=
21
3
,
21
3
3
3
,
∴直線AD與⊙M相離.
點評:此題主要考查了直角三角內(nèi)切圓的性質(zhì)以及相似三角形的判定與性質(zhì),熟練利用相似三角形的性質(zhì)得出MO與BN的關(guān)系是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當(dāng)點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當(dāng)、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習(xí)冊答案