【題目】如圖,在矩形ABCD中,AB=6,BC=8,點E是BC邊上一點,將△ABE沿AE折疊,使點B落在點B′處.
(1)矩形ABCD的面積= ;
(2)當(dāng)△CEB′為直角三角形時,BE= .
【答案】(1)48;(2)3或6.
【解析】
試題分析:(1)直接利用矩形的面積求出答案;
(2)當(dāng)△CEB′為直角三角形時,有兩種情況:①當(dāng)點B′落在矩形內(nèi)部時,如答圖1所示.連結(jié)AC,先利用勾股定理計算出AC=10,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=6,可計算出CB′=4,設(shè)BE=x,則EB′=x,CE=8﹣x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當(dāng)點B′落在AD邊上時,如答圖2所示.此時四邊形ABEB′為正方形.
解:(1)∵在矩形ABCD中,AB=6,BC=8,
∴矩形ABCD的面積=6×8=48;
故答案為:48;
(2)當(dāng)△CEB′為直角三角形時,有兩種情況:
①當(dāng)點B′落在矩形內(nèi)部時,如答圖1所示.
連結(jié)AC,
在Rt△ABC中,AB=6,BC=8,
∴AC==10,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,如圖,
∴EB=EB′,AB=AB′=6,
∴CB′=10﹣6=4,
設(shè)BE=x,則EB′=x,CE=8﹣x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+42=(8﹣x)2,
解得x=3,
∴BE=3;
②當(dāng)點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,
∴BE=AB=6.
綜上所述,BE的長為3或6.
故答案為:3或6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:有理數(shù)m所表示的點到點3距離4個單位,a,b互為相反數(shù),且都不為零,c,d互為倒數(shù).求: 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,△ABC的頂點均在格點上,請在所給的平面直角坐標(biāo)系中按要求作圖并完成填空:
(1)作出△ABC關(guān)于原點O成中心對稱的△A1B1C1,寫出點B1的坐標(biāo) ;
(2)作出△A1B1C1繞點O逆時針旋轉(zhuǎn)90°的△A2B2C2,寫出點C2的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c過點A(1,4),B(﹣2,﹣5)
(1)求此拋物線的解析式;
(2)當(dāng)y>0時,x的取值范圍是 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一組數(shù):﹣8,0,﹣32,﹣(﹣5.7),其中負(fù)數(shù)的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把多項式x2﹣6x+9分解因式,結(jié)果正確的是( )
A.(x﹣3)2
B.(x﹣9)2
C.(x+3)(x﹣3)
D.(x+9)(x﹣9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行了一次中考體育科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 ,并把圖2條形統(tǒng)計圖補充完整;
(3)該縣九年級有學(xué)生3500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)為 .
(4)測試?yán)蠋熛霃?/span>4位同學(xué)(分別記為E、F、G、H,其中E為小明)中隨機選擇兩位同學(xué)了解平時訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com