【題目】已知AMCN,點B為平面內(nèi)一點,ABBCB

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;

(2)如圖2,過點BBDAM于點D,試說明:∠ABD=C

(3)如圖3,在(2)問的條件下,點EDM上,且BE平分∠DBC,試說明∠ABE=AEB

【答案】(1);(2)證明見解析;(3)證明見解析.

【解析】分析:(1)、利用平行線的性質(zhì)以及直角三角形的性質(zhì)進行證明即可;(2)、BBFCN,根據(jù)平行線的性質(zhì)得出∠C=∠CBF,再根據(jù)同角的余角相等得出∠ABD=∠CBF,從而得出結(jié)論;(3)、BBFCN,根據(jù)平行線的性質(zhì)得出∠AEB=∠EBF,根據(jù)角平分線的性質(zhì)可以得出∠ABE=∠EBF,從而得出答案.

詳解:(1

2)過BBFCN , ,AMCN,BFAM ,

BDAM,BDBF,,

ABBC, , ∴∠ABD=C ;

3)過BBFCN,由(2)知BFAM,,BE平分∠DBC,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,屬于真命題的是(  )

A.兩個銳角之和為鈍角B.內(nèi)錯角相等

C.銳角小于它的補角D.相等的兩個角是對頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出點B的對應(yīng)點B1的坐標(biāo);
(2)畫出△ABC繞點A按逆時針旋轉(zhuǎn)90°后的△AB2C2 , 并寫出點C的對應(yīng)點C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,, 是它的角平分線 上的一點, 分別平分, ,垂足為點

求證:( .(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下面的說理過程補充完整:

已知:如圖,∠1+2=180°,3=B,試判斷∠AED與∠C的關(guān)系,并說明理由.

解:∠AED=C.

理由:∵∠1+ADG=180°(平角定義),∠1+2=180°(已知).

∴∠2=ADG.(_____________)

EFAB(______________).

∴∠3=AED(_____________).

∵∠3=B(已知),

∴∠B=________(________________)

DEBC(__________________).

∴∠AED=C(_________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校需購買一批課桌椅供學(xué)生使用,已知A型課桌椅230元/套,B型課桌椅200元/套.
(1)該校購買了A,B型課桌椅共250套,付款53000元,求A,B型課桌椅各買了多少套?
(2)因?qū)W生人數(shù)增加,該校需再購買100套A,B型課桌椅,現(xiàn)只有資金22000元,最多能購買A型課桌椅多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.

(1)請直接寫出點A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標(biāo);
(3)如圖(2),F(xiàn)為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),B(b,3),C(4,0),且滿足(a+b)2+| b-3|=0,線段ABy軸于F點.

(1)求點A、B的坐標(biāo).

(2)求點F的坐標(biāo);

(3)P為坐標(biāo)軸上一點,若△ABP的面積和△ABC的面積相等,求出P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃容器高19cm,底面周長為60cm,在外側(cè)距下底1.5cm的點A處有一只蜘蛛,在蜘蛛正對面的圓柱形容器的外側(cè),距上底1.5cm處的點B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請你幫蜘蛛計算它沿容器側(cè)面爬行的最短距離.

查看答案和解析>>

同步練習(xí)冊答案