【題目】如圖①,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE.
(2)如圖②,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,AF=BF,原題設(shè)其他條件不變.求證:△AEF≌△BCF.
【答案】
(1)證明:∵AB=AC,D是BC的中點(diǎn),∴∠BAE=∠CAE.
在△ABE和△ACE中, ∴△ABE≌△ACE(SAS).
∴BE=CE 。
(2)證明:∵AB=AC, 點(diǎn)D是BC的中點(diǎn),
∴AD⊥BC.
∴∠EAF+∠C=90°.
∵BF⊥AC,
∴∠CBF+∠C=90°.
∴∠EAF=∠CBF.
在△AEF和△BCF中,
∴△AEF≌△BCF(ASA) 。
【解析】(1)根據(jù)等腰三角形的三線合一得出 :∠BAE=∠CAE,然后利用SAS判斷出△ABE≌△ACE , 根據(jù)全等三角形對(duì)應(yīng)邊相等得出BE=CE ;
(2)根據(jù)等腰三角形的三線合一得出AD⊥BC,根據(jù)直角三角形兩銳角互余得出∠EAF+∠C=90° , ∠CBF+∠C=90°,根據(jù)同角的余角相等得出∠EAF=∠CBF,然后根據(jù)ASA判斷出△AEF≌△BCF 。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解余角和補(bǔ)角的特征的相關(guān)知識(shí),掌握互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無關(guān),以及對(duì)等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小剛和小紅各自隨機(jī)選擇本周日的上午或下午去揚(yáng)州科技館參觀.
(1) 小明、小剛本周日的上午去參觀的概率為_____;
(2) 求他們?nèi)嗽谕话胩烊⒂^的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(2,﹣3)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△PAB中,PA=PB,M,N,K分別是PA,PB,AB上的點(diǎn),且AM=BK,BN=AK,若∠MKN=44°,則∠P的度數(shù)為( )
A.44°
B.66°
C.88°
D.92°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三角形的兩條邊的長(zhǎng)度是4cm和7cm,則第三條邊的長(zhǎng)度可能是()
A.2cmB.3cmC.8cmD.12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B,C,E在y軸上,Rt△ABC經(jīng)過變換得到Rt△ODE,若點(diǎn)C的坐標(biāo)為(0,1),AC=2,則這種變換可以是( )
A.△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移3個(gè)單位長(zhǎng)度
B.△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移1個(gè)單位長(zhǎng)度
C.△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移1個(gè)單位長(zhǎng)度
D.△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移3個(gè)單位長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=x2+4x﹣3與x軸交于A、B兩點(diǎn),將C1向右平移得到C2,C2與x軸交于B、C兩點(diǎn).
(1)求拋物線C2的解析式.
(2)點(diǎn)D是拋物線C2在x軸上方的圖象上一點(diǎn),求S△ABD的最大值.
(3)直線l過點(diǎn)A,且垂直于x軸,直線l沿x軸正方向向右平移的過程中,交C1于點(diǎn)E交C2于點(diǎn)F,當(dāng)線段EF=5時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com