(2012•清遠(yuǎn)一模)如圖,在梯形ABCD中,AD∥BC,BC=4,點(diǎn)M是AD的中點(diǎn),△MBC是等邊三角形.
(1)求證:梯形ABCD是等腰梯形;
(2)動(dòng)點(diǎn)P、Q分別在線段BC和MC上運(yùn)動(dòng),且∠MPQ=60°保持不變.設(shè)PC=x,MQ=y,求y與x的函數(shù)關(guān)系式;
(3)在(2)中當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說(shuō)明理由.

【答案】分析:(1)要證梯形ABCD是等腰梯形,只需證△AMB≌△DMC.
(2)由△BMP∽△CQP,可得到BP與CQ的關(guān)系,從而轉(zhuǎn)化成y與x的函數(shù)關(guān)系式.
(3)先利用二次函數(shù)求最值,求出y取最小值時(shí)x的值和y的最小值,從而確定P、Q的位置,判斷出△PQC的形狀.
解答:(1)證明:∵△MBC是等邊三角形,
∴MB=MC,∠MBC=∠MCB=60°.(1分)
∵M(jìn)是AD中點(diǎn),
∴AM=MD.
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC.(2分)
∴AB=DC.
∴梯形ABCD是等腰梯形.(3分)

(2)解:在等邊△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,
∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°.
∴∠BMP=∠QPC.(4分)
∴△BMP∽△CQP.
.(5分)
∵PC=x,MQ=y,
∴BP=4-x,QC=4-y.(6分)

∴y=x2-x+4.(7分)

(3)解:△PQC為直角三角形,
理由是:
∵y=(x-2)2+3,
∴當(dāng)y取最小值時(shí),x=PC=2.(8分)
∴P是BC的中點(diǎn),MP⊥BC而∠MPQ=60°.
∴∠CPQ=30°.
∴∠PQC=90°.
∴△PQC為直角三角形.(9分)
點(diǎn)評(píng):主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•清遠(yuǎn)一模)一只布袋內(nèi)有1個(gè)白球、3個(gè)紅球、3個(gè)黑球(這些球除顏色外,其余沒(méi)有區(qū)別),從中任意取出一球,則取得紅球的概率是
3
7
3
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•清遠(yuǎn)一模)在一塊長(zhǎng)16m,寬12m的矩形荒地上,要建造一個(gè)花園,要求花園面積是荒地面積的一半,下面分別是小華與小芳的設(shè)計(jì)方案.同學(xué)們都認(rèn)為小華的方案是正確的,但對(duì)小芳方案是否符合條件有不同意見,你認(rèn)為小芳的方案符合條件嗎?若不符合,請(qǐng)用方程的方法說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省武漢市中考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

(2012•清遠(yuǎn)一模)已知:如圖,△ABC內(nèi)接于⊙O,點(diǎn)D在OC的延長(zhǎng)線上,sinB=,∠CAD=30°.
(1)求證:AD是⊙O的切線;
(2)若OD⊥AB,BC=5,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省宿遷市泗洪縣中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2012•清遠(yuǎn)一模)將拋物線y=x2-2x+1的圖象繞它的頂點(diǎn)A旋轉(zhuǎn)180°,則旋轉(zhuǎn)后的拋物線的函數(shù)關(guān)系式為( )
A.y=-x2+2x+1
B.y=-x2-2x+1
C.y=-x2+2x-1
D.y=x2+2x+1

查看答案和解析>>

同步練習(xí)冊(cè)答案