【題目】如圖,四邊形ABCD中,AC、BD是它的對角線,∠ABC=∠ADC=90°,∠BCD是銳角.
(1)若BD=BC,證明:sin∠BCD=.
(2)若AB=BC=4,AD+CD=6,求的值.
(3)若BD=CD,AB=6,BC=8,求sin∠BCD的值.
(注:本題可根據(jù)需要自己畫圖并解答)
【答案】(1)見解析;(2);(3).
【解析】分析:
(1)如圖1,過點B作BE⊥AD交AD的延長線于點E,由已知條件易得點A、B、C、D四點共圓,由此可得∠EAB=∠BCD,∠EDB=∠BCA,結(jié)合∠DEB=∠ABC=90°,可得△BED∽△ABC,從而可得sin∠BCD=sin∠EAB=,結(jié)合BD=BC即可得到所求結(jié)論;
(2)如圖2中,過點B作BF⊥BD交DC的延長線于F.由已知條件通過證△DAB≌△CBF得到BD=BF,AD=CF,從而可得△DBF是等腰直角三角形,由此可得BD=DF,結(jié)合DF=DC+CF=DC+AD=6即可求得BD的長,在Rt△ABC中求得AC的長即可求得的值;
(3)當(dāng)BD=CD時,如圖3中,過點B作MN∥DC,過點C作CN⊥MN,垂足為N,延長DA交MN于點M,易得四邊形DCNM是矩形,△ABM∽△BCN,從而可得,設(shè)AM=6y,BN=8y,BM=6x,CN=8x,則易得BD=10x,由BD=DC=MN=MB+BN可得10x=6x+8y,則x=2y,由此在Rt△ABM中,可得AB==6y,結(jié)合(1)中所得∠BCD=∠MAB即可由sin∠MAB=求得sin∠BCD的值了.
詳解:
(1)如圖1中,過點B作AD的垂線BE交DA的延長線于點E,
∵∠ABC=∠ADC=90°,
∴∠ADC+∠ABC=180°,
∴點A、B、C、D四點共圓,
∴∠BDE=∠ACB,∠EAB=∠BCD,
∵∠BED=∠ABC=90°,
∴△BED∽△ABC,
∴ ,
∵ ∠EAB=∠BCD,sin∠EAB=,
∴sin∠BCD=;
(2)如圖2中,過點B作BF⊥BD交DC的延長線于F.
∵∠ABC=∠DBF=90°,∠BAD+∠BCD+∠ABC+∠ADC=360°,∠ABC+∠ADC=180°,
∴∠BAD=180°﹣∠BCD=∠BCF,
∵∠BCF=∠BAD,BC=BA,
∴△DAB≌△CBF,
∴BD=BF,AD=CF,
∵∠DBF=90°,
∴△BDF是等腰直角三角形,
∴BD=DF,
∵AD+CD=6,
∴CF+CD=DF=6,
∴BD=3,AC=,
∴.
(3)當(dāng)BD=CD時,如圖3中,過點B作MN∥DC,過點C作CN⊥MN,垂足為N,延長DA交MN于點M,則四邊形DCNM是矩形,△ABM∽△BCN,
∴,
設(shè)AM=6y,BN=8y,BM=6x,CN=8x,
在Rt△BDM中,BD==10x,
∵BD=DC,
∴10x=6x+8y,
∴x=2y,
在Rt△ABM中,AB==6y,
∴sin∠BCD=sin∠MAB=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=﹣2x﹣1經(jīng)過拋物線上一點B(﹣2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別,
(1)隨機從A組抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在“十一”長假期間對顧客實行優(yōu)惠,規(guī)定如下:
一次性購物金額 | 優(yōu)惠辦法 |
不超過100元 | 不予優(yōu)惠 |
超過100元但不超過500元 | 超過100元部分給予九折優(yōu)惠 |
超過500元 | 超過500元部分給予八折優(yōu)惠 |
(1)小明的爺爺一次性購200元的保健食品,他實際付款_____元;小明媽媽一次性購300元的衣服,她實際付款_____元;如果他們兩人合作付款,則能少付_____元;
(2)小芳奶奶在該超市一次性購物x元生活用品,當(dāng)x大于或等于500時,她實際付款_____元;(用含x的式子表示,寫最簡結(jié)果)
(3)如果小芳奶奶兩次購物貨款合計900元,第一次購物的貨款為a元(),兩次購物小芳奶奶實際付款多少元?(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(﹣4,0),B(﹣1,3)兩點,點C、B關(guān)于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的函數(shù)表達式;
(2)寫出點C的坐標(biāo),并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于x軸的下方,當(dāng)△ABP的面積為15時,求出點P的坐標(biāo);
(4)若點M在直線BH上運動,點N在x軸上運動,當(dāng)以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過A(3,0),B(0,3)兩點.
(1)求此拋物線的解析式和直線AB的解析式;
(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當(dāng)E,F(xiàn)中任意一點到達終點時另一點也隨之停止運動,連接EF,設(shè)運動時間為t秒,當(dāng)t為何值時,△AEF為直角三角形?
(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構(gòu)成無數(shù)個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標(biāo);如果不存在,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,的坐標(biāo)分別為,,現(xiàn)同時將點,分別向上平移2個單位,再向右平移1個單位,分別得到點,的對應(yīng)點,,連接,,.
(1)求點,的坐標(biāo)及四邊形的面積
(2)在軸上是否存在一點,連接,,使,若存在這樣一點,求出點的坐標(biāo),若不存在,試說明理由.
(3)點是線段上的一個動點,連接,,當(dāng)點在上移動時(不與,重合)給出下列結(jié)論:
①的值不變,② 的值不變,其中有且只有一個是正確的,請你找出這個結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七年級同學(xué)到野外開展數(shù)學(xué)綜合實踐活動,在營地看到一池塘,同學(xué)們想知道池塘兩端的距離.有一位同學(xué)設(shè)計了如下測量方案:先在平地上取一個可直接到達A、B的點E(A、B為池塘的兩端),連接AE、BE并分別延長AE至D,BE至C,使ED=AE,EC=EB,測出CD的長作為AB之間的距離.
(1)他的方案可行嗎?請說明理由.
(2)若測得CD=10m,則池塘兩端的距離是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com