如圖,在△ABC和△FED中,AD=FC,AB=FE,若要得到△ABC≌FED,則需要再添加的一個(gè)條件是
BC=DE
BC=DE
.(只需填寫一個(gè)你認(rèn)為正確的條件即可)
分析:求出AC=DF,根據(jù)SSS推出即可.
解答:解:條件是BC=DE,
理由是:∵AD=FC,
∴AD+DC=CF+DC,
∴AC=DF,
在△ABC和△FED中
AB=EF
AC=DF
BC=DE

∴△ABC≌△FED,
故答案為:BC=DE.
點(diǎn)評(píng):本題考查了全等三角形的判定定理的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,此題是一道開放型的題目,答案不唯一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點(diǎn)E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補(bǔ),DE=mAC(m>1).試探索線段EF與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點(diǎn).則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請(qǐng)說明AE=BD的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案