【題目】如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E.
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為(平方單位).(只寫結果,不必說理)
【答案】
(1)證明:∵BC=2AD,點F為BC的中點,
∴CF=AD.
又∵AD∥BC,
∴四邊形AFCD是平行四邊形,
∴∠DAE=∠C,AF∥DC,
∴∠AFG=∠CGF.
∵DE∥GF,
∴∠AED=∠AFG,
∴∠AED=∠CGF
∴△AED≌△CGF;
(2)解:結論:四邊形DEFG是菱形.
證明如下:連接DF.
由(1)得AF∥DC,
又∵DE∥GF,
∴四邊形DEFG是平行四邊形.
∵AD∥BC,AD=BF= BC,
∴四邊形ABFD是平行四邊形,
又∵∠B=90°,
∴四邊形ABFD是矩形,
∴∠DFC=90°,
∵點G是CD的中點,
∴FG=DG= CD,
∴四邊形DEFG是菱形;
(3) a
【解析】(3)四邊形DEFG的面積=梯形ABCD的面積﹣S△ABF﹣2S△CFG ,
∵梯形ABCD的面積為a,
∴四邊形DEFG的面積為 a;
【考點精析】根據(jù)題目的已知條件,利用梯形的定義的相關知識可以得到問題的答案,需要掌握一組對邊平行,另一組對邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C的解析式為y=ax2+bx+c,則下列說法中錯誤的是( )
A.a確定拋物線的形狀與開口方向
B.若將拋物線C沿y軸平移,則a,b的值不變
C.若將拋物線C沿x軸平移,則a的值不變
D.若將拋物線C沿直線l:y=x+2平移,則a、b、c的值全變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩種商品原來的單價和為100元.因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.甲、乙兩種商品原來的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長為1,請你根據(jù)所學的知識解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關于∠α與∠BCA關系的條件_____,使①中的兩個結論仍然成立。
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關系的合理猜想并給出理由。.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿EF折疊,使點B與CD的中點B′重合,若AB=2,BC=3,則△FCB′與△B′DG的面積之比為( )
A.9:4
B.3:2
C.16:9
D.4:3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從一個等腰三角形紙片的某角的頂點出發(fā),能將其剪成兩個等腰三角形紙片,則原等腰三角形紙片的底角為_______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com