【題目】如圖所示,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)求出格點△ABC(頂點均在格點上)的面積;
(2)畫出格點△ABC關于直線DE對稱的△A1B1C1;
(3)在DE上畫出點Q,使△QAB的周長最。
【答案】
(1)
解:S△ABC=3×3﹣ ×3×1﹣ ×2×1﹣ ×2×3=
(2)
解:所作圖形如圖所示:
(3)
解:如圖所示:
利用軸對稱圖形的性質(zhì)可得點A關于直線DE的對稱點A1,
連接A1B,交直線DE于點Q,點 Q即為所求,此時△QAB的周長最。
【解析】(1)用△ABC所在的四邊形的面積減去三個多余小三角形的面積即可;(2)從三角形各頂點向DE引垂線并延長相同的長度,找到對應點,順次連接;(3)利用軸對稱圖形的性質(zhì)可作點A關于直線DE的對稱點A1 , 連接BA1 , 交直線DE于點Q,點Q即為所求.
【考點精析】本題主要考查了作軸對稱圖形的相關知識點,需要掌握畫對稱軸圖形的方法:①標出關鍵點②數(shù)方格,標出對稱點③依次連線才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD、CE是腰AB、AC上的高,交于點O.
(1)求證:OB=OC.
(2)若∠ABC=65°,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的解題過程: 已知 = ,求 的值.
解:由 = 知x≠0,所以 =2,即x+ =2.
∴ =x2+ =(x+ )2﹣2=22﹣2=2,故 的值為
評注:該題的解法叫做“倒數(shù)法”,請你利用“倒數(shù)法”解下面的題目:
已知 = ,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(k+1)x2+2x﹣1=0有實數(shù)根,則k的取值范圍是( )
A.k≥﹣2B.k≥﹣2且k≠﹣1C.k≥2D.k≤﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=﹣x+3與x軸交于點C,與直線AD交于點A(,),點D的坐標為(0,1)
(1)求直線AD的解析式;
(2)直線AD與x軸交于點B,若點E是直線AD上一動點(不與點B重合),當△BOD與△BCE相似時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN. 下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°﹣∠AMN﹣∠AMB=180°﹣∠B﹣∠AMB=∠MAB=∠MAE,即∠NMC=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正n邊形ABCD…X,請你作出猜想:當∠AMN=時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com