如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與軸交于負(fù)半軸.給出四個結(jié)論:①abc<0;②2a+>0;③a+c=1; ④a>1.其中正確結(jié)論的序號是           (將你認(rèn)為正確結(jié)論的序號都填上) .
②,③,④

試題分析:如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),且與軸交于負(fù)半軸,令x=0,得y=〈0,觀察圖形二次函數(shù)的開口方向向上,所以a〉0,其對稱軸為于y軸的右邊,所以>0,所以b<0,所以abc>0,所以①錯誤;二次函數(shù)的圖象開口向上,圖象經(jīng)過點(-1,2)和(1,0),所以a-b+c=2,a+b+c=0,兩式子相加得2a+2c=2,所以a+c=1,因此③正確;a-b+c=2,a+b+c=0,兩式子相減得b=-1;由圖象可觀察出0<<1,又因為b=-1,所以,解得a>1,所以④正確;因為c<0, a+b+c=0,所以a+b>0,又因為a>0,所以2a+>0,因此②正確,所以正確結(jié)論的序號有②,③,④
點評:本題考查拋物線,解答本題需要考生掌握拋物線的性質(zhì),比如求其頂點坐標(biāo),對稱軸,與坐標(biāo)軸的交點,開口方向,二次函數(shù)是中考的重點
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=﹣x2+4與x軸交于A、B兩點,與y軸交于C點,點P是拋物線上的一個動點且在第一象限,過點P作x軸的垂線,垂足為D,交直線BC于點E.

(1)求點A、B、C的坐標(biāo)和直線BC的解析式;
(2)求△ODE面積的最大值及相應(yīng)的點E的坐標(biāo);
(3)是否存在以點P、O、D為頂點的三角形與△OAC相似?若存在,請求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線交y軸于點A,交x軸正半軸于點B.

(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于x軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象過點A(0,﹣3),B(),對稱軸為直線,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=MP,MD=OM,OE=ON,NF=NP.

(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過點A(3,0),B(﹣1,0).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,過點A(0,4)的圓的圓心坐標(biāo)為C(2,0),B是第一象限圓弧上的一點,且BC⊥AC,拋物線經(jīng)過C、B兩點,與x軸的另一交點為D。

(1)點B的坐標(biāo)為(       ,       ),拋物線的表達(dá)式為       .
(2)如圖2,求證:BD//AC;
(3)如圖3,點Q為線段BC上一點,且AQ=5,直線AQ交⊙C于點P,求AP的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列選項正確的是
A.a(chǎn)>0B.c>0C.a(chǎn)c>0D.bc<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線的頂點為P(-2,2)與y軸交于點A(0,3),若平移該拋物線使其頂P沿直線移動到點,點A的對應(yīng)點為,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀理解下面的例題,再按要求解答后面的問題
例題:解一元二次不等式>0.解:令y=,畫出y=如圖所示,

由圖像可知:當(dāng)x<1或x>2時,y>0.所以一元二次不等式>0的解集為x<1或x>2.
填空:(1)<0的解集為                              ;
(2)>0的解集為                              
用類似的方法解一元二次不等式>0.

查看答案和解析>>

同步練習(xí)冊答案