【題目】如圖,在同一平面內(nèi),兩條平行高速公路和間有一條“”型道路連通,其中段與高速公路成角,長為;段與、段都垂直,段長為,段長為.則兩條高速公路和間的距離為________米(結(jié)果保留根號).
【答案】
【解析】
過B作MN⊥l1.作EF⊥l2于點(diǎn)F,CG⊥MN于點(diǎn)G,利用三角函數(shù)分別求得BM、BG和EF的長,三者的和就是所求.
過B作MN⊥l1.作EF⊥l2于點(diǎn)F,CG⊥MN于點(diǎn)G.
在直角△ABM中,BM=ABsin30°=20×=10km,∠ABM=60°,
在直角△BCG中,∠CBG=180°-90°-60°=30°,
則BG=BCcos30°=10×km,
在直角△CDF中,∠CDF=30°,
則EF=CD=×30=15km.
則兩條高速公路l1和l2間的距離為:10+5+15=25+5(km).
故答案是:25+5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,2),B(4,1),C(2,﹣2).
(1)請寫出△ABC關(guān)于x軸對稱的點(diǎn)A1,B1,C1的坐標(biāo);
(2)請?jiān)谧鴺?biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2;
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-3,5),B(-2,1),C(-1,3).
①畫出△ABC關(guān)于x軸的對稱圖形△A1B1C1;
②畫出△A1B1C1沿x軸向右平移4個(gè)單位長度后得到的△A2B2C2;
③如果AC上有一點(diǎn)M(a,b)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點(diǎn)M2的坐標(biāo)是 .
(2)請?jiān)趫D2用無刻度的直尺在圖中以AB為一邊畫一個(gè)面積為18的長方形ABMN.(不要求寫畫法,但要保留畫圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形QABC是矩形,ADEF是正方形,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B、E在反比例函數(shù)y=kx的圖象上,OA=1,OC=6,則正方形ADEF的邊長為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,物理教師為同學(xué)們演示單擺運(yùn)動(dòng),單擺左右擺動(dòng)中,在OA的位置時(shí)俯角∠EOA=30°,在OB的位置時(shí)俯角∠FOB=60°,若OC⊥EF,點(diǎn)A比點(diǎn)B高7cm,求單擺的長度(結(jié)果精確到0.1,參考數(shù)據(jù):≈ 1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,則不正確的結(jié)論是( )
A. Rt△ACD和Rt△BCE全等 B. OA=OB
C. E是AC的中點(diǎn) D. AE=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點(diǎn),過點(diǎn)D作DH⊥AC于點(diǎn)H.
(1)判斷DH與⊙O的位置關(guān)系,并說明理由;
(2)求證:H為CE的中點(diǎn);
(3)若BC=10,cosC=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com