【題目】2014年,河北省委宣傳部主辦河北節(jié)約之星活動,表彰節(jié)水先進典型,省委宣傳部號召全社會以節(jié)水先進典型為榜樣,牢固樹立節(jié)約用水理念,爭做節(jié)儉美德的傳承者,節(jié)約用水的踐行者.小鵬想了解某小區(qū)住戶月均用水情況,隨機調查了該小區(qū)部分住戶,并將調查數(shù)據(jù)繪制成如圖所示的頻數(shù)分布直方圖(不完整)和如下的頻數(shù)分布表.

月均用水量x(噸)

頻數(shù)(戶)

頻率

0<x≤4

12

a

4<x≤8

32

0.32

8<x≤12

b

c

12<x≤16

20

0.2

16<x≤20

8

0.08

20<x≤24

4

0.04

(1)求a,b,c的值,并將如圖所示的頻數(shù)分布直方圖補充完整;

(2)求月均用水量超過12噸的住戶占所調查總住戶的百分比;

(3)若該小區(qū)有1000住戶,根據(jù)所調查的數(shù)據(jù),該小區(qū)月均用水量沒有超過8噸的住戶有多少?

【答案】(1)a=0.12;b=24;c=0.24;(2)32%;(3)440戶.

【解析】

(1)根據(jù)4<x≤8的頻數(shù)和頻率求出總數(shù),再用0<x≤4的頻數(shù)乘以總數(shù)求出a,用總數(shù)減去其它月均用水量求出8<x≤12的頻數(shù),即b的值,用B的值除以總數(shù)即可求出c,從而補全統(tǒng)計圖;

(2)把月均用水量超過12噸的住戶的頻率加起來即可得出答案;

(3)用該小區(qū)的住戶乘以月均用水量沒有超過8噸的百分比即可得出答案.

(1)根據(jù)題意得:=100(噸),

a=0.12;

b=100﹣12﹣32﹣20﹣8﹣4=24;

c=0.24;

補圖如下:

(2)月均用水量超過12噸的住戶占所調查總住戶的百分比是:0.2+0.08+0.04=0.32=32%;

(3)根據(jù)題意得:

1000×(0.12+0.32)=440(戶),

答:該小區(qū)月均用水量沒有超過8噸的住戶有440戶.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是雙曲線在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰RtABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式為(。

A. y=﹣x B. y=﹣x C. y=﹣ D. y=﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=3,BC=2,ACAD,∠ACD=60°,則對角線BD長的最大值為( 。

A. 5 B. 2 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.

(1)求此拋物線的解析式;

(2)求C、D兩點坐標及BCD的面積;

(3)若點P在x軸上方的拋物線上,滿足SPCD=SBCD,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,頂點為D的拋物線y=﹣x2+x+4y軸交于點A,與x軸交于兩點B、C(點B在點C的左邊),點A與點E關于拋物線的對稱軸對稱,點B、E在直線y=kx+b(k,b為常數(shù))上.

(1)k,b的值;

(2)P為直線AE上方拋物線上的任意一點,過點PAE的垂線交AE于點F,點Gy軸上任意一點,當△PBE的面積最大時,求PF+FG+OG的最小值;

(3)(2)中,當PF+FG+OG取得最小值時,將△AFG繞點A按順時方向旋轉30°后得到△AF1G1,過點G1AE的垂線與AE交于點M.點D向上平移個單位長度后能與點N重合,點Q為直線DN上任意一點,在平面直角坐標系中是否存在一點S,使以S、Q、M、N為頂點且MN為邊的四邊形為菱形?若存在,直接寫出點S的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2x﹣與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.

(1)求直線AE的解析式;

(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當PCE的面積最大時,連接CD,CB,點K是線段CB的中點,點M是CP上的一點,點N是CD上的一點,求KM+MN+NK的最小值;

(3)點G是線段CE的中點,將拋物線y=x2x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在一點Q,使得FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O在邊長為6的正方形ABCD的對角線AC上,以O為圓心OA為半徑的⊙OAB于點E.

(1)⊙O過點E的切線與BC交于點F,當0<OA<6時,求∠BFE的度數(shù);

(2)設⊙OAB的延長線交于點M,⊙O過點M的切線交BC的延長線于點N,當6<OA<12時,利用備用圖作出圖形,求∠BNM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,點Q坐標為(x,y),若過點Q的直線lx軸夾角為45°時,則稱直線l為點Q的“湘依直線”.

(1)已知點A的坐標為(6,0),求點A的“湘依直線”表達式;

(2)已知點D的坐標為(0,﹣4),過點D的“湘依直線”圖象經(jīng)過第二、三、四象限,且與x軸交于C點,動點P在反比例函數(shù)y=(x>0)上,求△PCD面積的最小值及此時點P的坐標;

(3)已知點M的坐標為(0,2),經(jīng)過點M且在第一、二、三象限的“湘依直線”與拋物線y=x2+(m﹣2)x+m+2相交與A(x1,y1),B(x2,y2)兩點,若0≤x1≤2,0≤x2≤2,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上任意一點,且CD切⊙O于點D.

(1)試求∠AED的度數(shù).

(2)若⊙O的半徑為cm,試求△ADE面積的最大值.

查看答案和解析>>

同步練習冊答案