【題目】已知∠AOB是一個(gè)直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1)如圖①,當(dāng)∠BOC=40°時(shí),求∠DOE的度數(shù);
(2)如圖②,當(dāng)射線OC在∠AOB內(nèi)繞O點(diǎn)旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化,說(shuō)明理由;
(3)當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)且∠AOC為鈍角時(shí),畫(huà)出圖形,直接寫(xiě)出∠DOE的度數(shù)(不必寫(xiě)過(guò)程).
【答案】(1)45°;(2)∠DOE的大小不變,理由見(jiàn)解析;(3)45°或135°;畫(huà)圖見(jiàn)解析.
【解析】
(1)如圖①,當(dāng)∠BOC=40°時(shí),求∠DOE的度數(shù);
(2)如圖②,當(dāng)射線OC在∠AOB內(nèi)繞O點(diǎn)旋轉(zhuǎn)時(shí),∠DOE的大小是否發(fā)生變化,說(shuō)明理由;
(3)當(dāng)射線OC在∠AOB外繞O點(diǎn)旋轉(zhuǎn)且∠AOC為鈍角時(shí),畫(huà)出圖形,直接寫(xiě)出相應(yīng)的∠DOE的度數(shù)(不必寫(xiě)出過(guò)程).
解:(1)如圖,∠AOC=90°﹣∠BOC=50°,
∵OD、OE分別平分∠AOC和∠BOC,
∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,
∴∠DOE=∠COD+∠COE=45°;
(2)∠DOE的大小不變,理由是:
∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;
(3)∠DOE的大小發(fā)生變化情況為,
如圖3,則∠DOE為45°;如圖4,則∠DOE為135°,
分兩種情況:如圖3所示,
∵OD、OE分別平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC,
∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;
如圖4所示,∵OD、OE分別平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC,
∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自我國(guó)實(shí)施“限塑令”起,開(kāi)始有償使用環(huán)保購(gòu)物袋,為了滿足市場(chǎng)需求,某廠家生產(chǎn)A、B兩種款式的布質(zhì)環(huán)保購(gòu)物袋,每天生產(chǎn)4500個(gè),兩種購(gòu)物袋的成本和售價(jià)如下表,若設(shè)每天生產(chǎn)A種購(gòu)物袋 x個(gè).
(1)用含x的整式表示每天的生產(chǎn)成本,并進(jìn)行化簡(jiǎn);
(2)用含x的整式表示每天獲得的利潤(rùn),并進(jìn)行化簡(jiǎn)(利潤(rùn)=售價(jià)-成本);
(3)當(dāng)x=1500時(shí),求每天的生產(chǎn)成本與每天獲得的利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=BC,射線AP交邊BC于點(diǎn)E,點(diǎn)D是射線AP上一點(diǎn),連接BD、CD .
(1)如圖1,當(dāng)∠CAB=45°,∠BDP=90°時(shí),請(qǐng)直接寫(xiě)出DA與DB、DC之間滿足的數(shù)量關(guān)系為: .
(2)如圖2,當(dāng)∠CAB=30°,∠BDP=60°時(shí),試猜想:DA與DB、DC之間具有怎樣的數(shù)量關(guān)系?并說(shuō)明理由.
(3)如圖3,當(dāng)∠ACB=,∠BDP=,若與之間滿足,則DA與DB、DC之間的數(shù)量關(guān)系為 .(請(qǐng)直接寫(xiě)出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,均是等邊三角形,由這3個(gè)等邊三角形組成一個(gè)新圖形,現(xiàn)有下列結(jié)論:①;②是一個(gè)平角;③;④新圖形是一個(gè)軸對(duì)稱(chēng)圖形,并且只有一條對(duì)稱(chēng)軸.其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(-4,4),B(-3,1),C(-1,2)。
(1)將△ABC向右平移5個(gè)單位,得到△A1B1C1,畫(huà)出圖形,并直接寫(xiě)出A1的坐標(biāo);
(2)作出△A1B1C1關(guān)于x軸對(duì)稱(chēng)的圖形△A2B2C2,并直接寫(xiě)出C2點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過(guò)點(diǎn)A作AC⊥OY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)P是△ABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過(guò)點(diǎn)P作PD∥OY交OX于點(diǎn)D,作PE∥OX交OY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司分兩次采購(gòu)甲、乙兩種商品,具體情況如下:
商品 | 甲 | 乙 | 花費(fèi)資金 |
次數(shù) | |||
第一次采購(gòu)件數(shù) | 10件 | 15件 | 350元 |
第二次采購(gòu)件數(shù) | 15件 | 10件 | 375元 |
(1)求甲、乙商品每件各多少元?
(2)公司計(jì)劃第三次采購(gòu)甲、乙兩種商品共31件,要求花費(fèi)資金不超過(guò)475元,問(wèn)最多可購(gòu)買(mǎi)甲商品多少件?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com