已知:如圖,在直角坐標(biāo)系中,O為原點,點A、B的坐標(biāo)分別為(3
3
-3
,0)、(3+3
3
,0),點C、D在一個反比例函數(shù)的圖象上,且∠AOC=45°,∠ABC=30°,AB=BC,DA=DB.
求:點C、D兩點的坐標(biāo).
過C、D分別作x軸的垂線,垂足分別為E、F,如圖,
∵點A、B的坐標(biāo)分別為(3
3
-3
,0)、(3+3
3
,0),
∴AB=3+3
3
-(3
3
-3)=6,
而∠ABC=30°,AB=BC,
∴BC=AB=6,CE=
1
2
BC=3,
又∵∠AOC=45°
∴OE=CE=3,
∴C點坐標(biāo)為(3,3);
設(shè)反比例函數(shù)的解析式為y=
k
x
,
把C(3,3)代入得k=3×3=9,
∴反比例函數(shù)的解析式為y=
9
x
,
又∵DA=DB,
∴AF=BF=3,
∴OF=3+3
3
-3=3
3
,
即點D橫坐標(biāo)為3
3

對于y=
9
x
,令x=3
3
,則y=
9
3
3
=
3
,
∴D點坐標(biāo)為(3
3
,
3
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點C在反比例函數(shù)y=
k
x
的圖象上,過點C作CD⊥y軸,交y軸負(fù)半軸于點D,且△ODC的面積是3.
(1)求反比例函數(shù)y=
k
x
的解析式;
(2)將過點O且與OC所在直線關(guān)于y軸對稱的直線向上平移2個單位后得到直線AB,如果CD=1,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y1=-2x經(jīng)過點P(-2,a),點P關(guān)于y軸的對稱點P′在反比例函數(shù)y2=
k
x
(k≠0)的圖象上.
(1)求點P′的坐標(biāo);
(2)求反比例函數(shù)的解析式,并直接寫出當(dāng)y2<2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知一次函數(shù)y=2x+2的圖象與y軸交于點B,與反比例函數(shù)y=
k1
x
的圖象的一個交點為A(1,m).過點B作AB的垂線BD,與反比例函數(shù)y=
k2
x
(x>0)的圖象交于點D(n,-2).
(1)求k1和k2的值;
(2)若直線AB、BD分別交x軸于點C、E,試問在y軸上是否存在一個點F,使得△BDF△ACE?若存在,求出點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知反比例函數(shù)y=
k
x
的圖象經(jīng)過點P(2,-1),則它的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知一次函數(shù)y1=x+m(m為常數(shù))的圖象與反比例函數(shù)y2=
k
x
(k為常數(shù),k≠0)的圖象相交于點A(1,3).
(1)求這兩個函數(shù)的解析式及其圖象的另一交點B的坐標(biāo);
(2)點C(a,b)在反比例函數(shù)y2=
k
x
的圖象上,求當(dāng)1≤a≤3時,b的取值范圍;
(3)觀察圖象,寫出使函數(shù)值y1≥y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一次函數(shù)y=-
1
3
x+2
的圖象分別與x軸、y軸相交于A、B兩點,點P為線段AB上一點,PC⊥x軸于點C,延長PC交反比例函數(shù)y=
k
y
(x>0)
的圖象于點Q,且tan∠OAQ=
1
3
.連接OP、OQ,四邊形OQAP的面積為6.
(1)求k的值;
(2)判斷四邊形OQAP的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中,已知菱形ABCD的面積為3,頂點A在雙曲線y=
k
x
上,CD與y軸重合,則k的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形OABC中,AB=2BC,點A在y軸的正半軸上,點C在x軸的正半軸上,連接OB,反比例函數(shù)y=
k
x
(k≠0,x>0)的圖象經(jīng)過OB的中點D,與BC邊交于點E,點E的橫坐標(biāo)是4,則k的值是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案