【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosxsinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

【答案】②③④

【解析】

根據(jù)題意,得,①cos(60°)=cos60°= ,故錯(cuò)誤;

sin75°=sin(45°+30°)=sin45°×cos30°+cos45°×sin30°= ,故正確;

sin2x=sinx﹒cosx+cosx·sinx=2sinx·cosx,故正確;

sin(xy)sinx·cos-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故正確,

故答案為:②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的位置如圖,網(wǎng)格中小正方形的邊長為1,點(diǎn)A坐標(biāo)為(1,2),請解答下列問題:

1)直接寫出點(diǎn)B,C兩點(diǎn)的坐標(biāo);

2)將ABC向下平移3個(gè)單位得到A1B1C1,作出平移后的A1B1C1

3)作出ABC繞點(diǎn)O的逆時(shí)針旋轉(zhuǎn)90°,得到A2B2C2,作出旋轉(zhuǎn)后的A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)圓形噴水池的中央豎直安裝了一個(gè)柱形噴水裝置OA,A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,水流噴出的高度ym)與水平距離xm)之間的關(guān)系式是x0

1)求水流噴出的最大高度是多少m?此時(shí)的水平距離是多少m

2)若不計(jì)其他因素,水池的半徑OB至少為多少m,才能使噴出的水流不落在池外.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,,,動點(diǎn)以每秒4個(gè)單位的速度從點(diǎn)沿線段點(diǎn)運(yùn)動,同時(shí)動點(diǎn)以每秒6個(gè)單位的速度從點(diǎn)出發(fā)沿的方向運(yùn)動,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),、同時(shí)停止運(yùn)動,若記的面積為,運(yùn)動時(shí)間為,則下列圖象中能大致表示,之間函數(shù)關(guān)系圖象的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn),,三點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,點(diǎn)是線段上的一個(gè)動點(diǎn),設(shè)點(diǎn)的坐標(biāo)為,過點(diǎn)軸的垂線交拋物線于點(diǎn),交直線于點(diǎn).

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)在點(diǎn)運(yùn)動過程中,是否存在點(diǎn),使得以為直徑的圓與軸相切?若存在,求出的值;若不存在,請說明理由;

(3)連接,繞平面內(nèi)某點(diǎn)順時(shí)針旋轉(zhuǎn),得到,點(diǎn)、的對應(yīng)點(diǎn)分別是點(diǎn)、.的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“和諧點(diǎn)”, 那么我們就稱這樣的點(diǎn)為“和諧點(diǎn)”,請直接寫出“和諧點(diǎn)”的個(gè)數(shù)和點(diǎn)A1的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)某學(xué)校智慧方園數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:

如圖1,在ABC中,點(diǎn)O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)BBDAC,交AO的延長線于點(diǎn)D,通過構(gòu)造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點(diǎn)O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課外興趣活動小組準(zhǔn)備圍建一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

(3)當(dāng)這個(gè)苗圃園的面積不小于100平方米時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì)盆景的平均每盆利潤是160,花卉的平均每盆利潤是19調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計(jì)劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCD內(nèi)一點(diǎn),連結(jié)P與矩形ABCD各頂點(diǎn),矩形EFGH各頂點(diǎn)分別在邊AP,BP,CP,DP上,已知AE2EP,EFAB,圖中兩塊陰影部分的面積和為S.則矩形ABCD的面積為( 。

A.4SB.6SC.12SD.18S

查看答案和解析>>

同步練習(xí)冊答案