【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫出△ABC關于y軸對稱的△A1B1C1;
②將△ABC繞著點B順時針旋轉90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉過程中所掃過的面積(結果保留π).
科目:初中數(shù)學 來源: 題型:
【題目】點A,B的坐標分別為(﹣2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點在線段AB上運動時,形狀保持不變,且與x軸交于C,D兩點(C在D的左側),給出下列結論:①c<3;②當x<﹣3時,y隨x的增大而增大;③若點D的橫坐標最大值為5,則點C的橫坐標最小值為﹣5;④當四邊形ACDB為平行四邊形時, .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學藝術節(jié)期間,向學校學生征集書畫作品.九年級美術李老師從全年級14個班中隨機抽取了A、B、C、D 4個班,對征集到的作品的數(shù)量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.
(1)李老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),李老師所調(diào)查的4個班征集到作品共件,其中B班征集到作品 , 請把圖2補充完整.
(2)如果全年級參展作品中有4件獲得一等獎,其中有2名作者是男生,2名作者是女生.現(xiàn)在要抽兩人去參加學?偨Y表彰座談會,求恰好抽中一男一女的概率.(要求用樹狀圖或列表法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側)兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).
(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點E,若∠COB=3∠AOB,OC=2 ,則圖中陰影部分面積是(結果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB′F.設點E、F、G運動的時間為t(單位:s).
(1)當t=s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,AC=2 .
(1)利用尺規(guī)作線段AC的垂直平分線DE,垂足為E,交AB于點D,(保留作圖痕跡,不寫作法)
(2)若△ADE的周長為a,先化簡T=(a+1)2﹣a(a﹣1),再求T的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com