【題目】已知△ABC中,AB=AC,∠A+∠B=110°,那么∠A=______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以A(5,1)為圓心,以2個(gè)單位長(zhǎng)度為半徑的⊙A交x軸于點(diǎn)B、C.解答下列問題:
(1)根據(jù)A點(diǎn)坐標(biāo)建立平面直角坐標(biāo)系;
(2)將⊙A向左平移____________個(gè)單位長(zhǎng)度與y軸首次相切,得到⊙A,并畫出⊙A.此時(shí)點(diǎn)A的坐標(biāo)為_____________.
(3)求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:[a,b]為一次函數(shù)y=ax+b(a≠0,a,b為實(shí)數(shù))的“關(guān)聯(lián)數(shù)”,若“關(guān)聯(lián)數(shù)”[1,m﹣2]的一次函數(shù)是正比例函數(shù),則關(guān)于x的方程x2+3x+m=0的解為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請(qǐng)寫出△ABC各點(diǎn)的坐標(biāo).
(2)求出S△ABC.
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊AB延長(zhǎng)到點(diǎn)E,使BE=AB,連接DE,交邊BC于點(diǎn)F.
(1)求證:△BEF≌△CDF.
(2)連接BD,CE,若∠BFD=2∠A,求證四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知□ABCD中,直線m繞點(diǎn)A旋轉(zhuǎn),直線m不經(jīng)過B、C、D點(diǎn),過B、C、D分別作BE⊥m于E, CF⊥m于F, DG⊥m于G.
(1)當(dāng)直線m旋轉(zhuǎn)到如圖1位置時(shí),線段BE、CF、DG之間的數(shù)量關(guān)系是 _;
(2)當(dāng)直線m旋轉(zhuǎn)到如圖2位置時(shí),線段BE、CF、DG之間的數(shù)量關(guān)系是 _;
(3)當(dāng)直線m旋轉(zhuǎn)到如圖3的位置時(shí),線段BE、CF、DG之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com