【題目】如圖,某旅游景區(qū)為方便游客,修建了一條東西走向的棧道AB,棧道AB與景區(qū)道路CD平行.在C處測得棧道一端A位于北偏西45°方向,在D處測得棧道另一端B位于北偏東32°方向.已知AC60 m ,CD46 m,求棧道AB的長(結(jié)果保留整數(shù)).參考數(shù)據(jù):sin32° ≈ 0.53,cos32° ≈ 0.85tan32° ≈ 0.62≈ 1.414.

【答案】115 m

【解析】

CCHAB于點H,過點DDGAB于點G,可得四邊形CHGD是矩形,根據(jù)解直角三角形中特殊角的三角函數(shù)值可求得AH和BG長,即可求得AB長.

解:如圖,過CCHAB于點H,過點DDGAB于點G,

ABCD,∴可得CHDG.

∴四邊形CHGD是矩形.

CH=DG,HG=CD.

Rt△ACH中,∠ACH=45°,AC=60,

CH=AC·cos45°=60×=,

AH=AC·sin45°=60×=.

Rt△BDG中,∠DBG=32°,DG=CH=,

BG= DG·tan32° =×tan32°.

AB=AH+HG+BG +46+×0.62 ≈ 115.

答:棧道AB的長度約為115 m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+2xy軸分別交于AC兩點,以AC為對角線作第一個矩形ABCO,對角線交點為A1,再以CA1為對角線作第二個矩形A1B1CO1,對角線交點為A2,同法作第三個矩形A2B2CO2對角線交點為A3,以此類推,則第2020個矩形對角線交點A2020的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.請根據(jù)你對這句話的理解,解決下面問題:若m、nmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、b、m、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BC2AB4,點E,F分別是BC,AD的中點.

(1)求證:△ABE≌△CDF;

(2)當(dāng)四邊形AECF為菱形時,求出該菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,BC=10,GBC邊上一點,沿AG折疊△ABG,點B的落點為P,GPAD于點E. EAD的中點,則BG的長是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,BC=10,GBC邊上一點,沿AG折疊△ABG,點B的落點為P,GPAD于點E. EAD的中點,則BG的長是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線)與軸交于A、B兩點(點BA的右側(cè)),與軸交于點C,D是拋物線的頂點.

1)當(dāng)時,求頂點D 的坐標(biāo)

2)若OD = OB,求的值;

3)設(shè)EA,B兩點間拋物線上的一個動點(含端點A,B),過點EEH軸,垂足為H,交直線BC于點F. 記線段EF的長為t,若t的最大值為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑物的頂部有一塊標(biāo)識牌 CD,小明在斜坡上 B 處測得標(biāo)識牌頂部C 的仰角為 45°, 沿斜坡走下來在地面 A 處測得標(biāo)識牌底部 D 的仰角為 60°,已知斜坡 AB 的坡角為 30°,ABAE10 米.則標(biāo)識牌 CD 的高度是( )米.

A.155B.2010C.105D.55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1為搭建在地面上的遮陽棚,圖2、圖3是遮陽棚支架的示意圖.遮陽棚支架由相同的菱形和相同的等腰三角形構(gòu)成,滑塊E,H可分別沿等長的立柱AB,DC上下移動,AFEFFG1m

1)若移動滑塊使AEEF,求∠AFE的度數(shù)和棚寬BC的長.

2)當(dāng)∠AFE60°變?yōu)?/span>74°時,問棚寬BC是增加還是減少?增加或減少了多少?(結(jié)果精確到0.1m.參考數(shù)據(jù):1.73,sin37°≈0.60,cos37°≈0.80tan37°≈0.75

查看答案和解析>>

同步練習(xí)冊答案