已知:如圖,在△ABC中,D,E分別是AB,AC上一點(diǎn),且∠AED =∠B.若AE=5,AB=9,CB=6.
(1)求證:△ADE∽△ACB;(2)求ED的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在矩形ABCD中,AB=10,BC=12,E為DC的中點(diǎn),連接BE,作AF⊥BE,垂足為F.
(1)求證:△BEC∽△ABF;
(2)求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
閱讀材料
如圖①,△ABC與△DEF都是等腰直角三角形,ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.解決問(wèn)題:
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫(xiě)出的值(用含α的式子表示出來(lái))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:四邊形ABCD和四邊形AEFC都是矩形,點(diǎn)B在EF邊上.
(1)請(qǐng)你找出圖中一對(duì)相似三角形(相似比不等于1),并加以證明;
(2)若四邊形ABCD的面積為20,求四邊形AEFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,∠CAB=90°,AD⊥BC于點(diǎn)D,點(diǎn)E為AB的中點(diǎn),EC與AD交于點(diǎn)G,點(diǎn)F在BC上.
(1)如圖1,AC:AB=1:2,EF⊥CB,求證:EF=CD.
(2)如圖2,AC:AB=1:,EF⊥CE,求EF:EG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在6×8的網(wǎng)格圖中,每個(gè)小正方形邊長(zhǎng)均為1,點(diǎn)O和△ABC的頂點(diǎn)均為小正方形的頂點(diǎn).
⑴以O(shè)為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比為1:2
⑵連接⑴中的AA′,求四邊形AA′C′C的周長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫(xiě)出結(jié)論;
②將圖1中的正方形CDEF,繞著點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點(diǎn)H,交AD于點(diǎn)O,請(qǐng)你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=,CF=1,BF交AC于點(diǎn)H,交AD于點(diǎn)O,連接BD、AF,求BD2+AF2的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com