【題目】如圖,在邊長(zhǎng)為a的正方形上剪去一個(gè)邊長(zhǎng)為b的小正方形(ab),把剩下的部分剪拼成一個(gè)梯形,分別計(jì)算這兩個(gè)圖形陰影部分的面積,由此可以驗(yàn)證的等式是( )

A. a2b2(ab)(ab) B. (ab)2a22abb2

C. (ab)2a22abb2 D. a2aba(ab)

【答案】A

【解析】根據(jù)正方形和梯形的面積公式,觀察圖形發(fā)現(xiàn)這兩個(gè)圖形陰影部分的面積=a2-b2=(a+b)(a-b).

正方形中,S陰影=a2-b2
梯形中,S陰影=2a+2b)(a-b)=(a+b)(a-b);
故所得恒等式為:a2-b2=(a+b)(a-b).
故選C.故選A.

“點(diǎn)睛”此題主要考查了平方差公式.即兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差,這個(gè)公式就叫做平方差公式,解題時(shí)要運(yùn)用數(shù)形結(jié)合的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【背景】已知:lmnk,平行線lmmn、nk之間的距離分別為d1d2,d3,且d1d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在l,m,nk這四條平行線上的四邊形稱為“格線四邊形” .

【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BEl于點(diǎn)E,BE的反向延長(zhǎng)線交直線k于點(diǎn)F.求正方形ABCD的邊長(zhǎng).

【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AEk于點(diǎn)E,∠AFD=90°,直線DF分別交直線lk于點(diǎn)G、點(diǎn)M.求證:ECDF

【拓展】(3)如圖3,lk,等邊△ABC的頂點(diǎn)A,B分別落在直線lk上,ABk于點(diǎn)B,且∠ACD=90°,直線CD分別交直線l、k于點(diǎn)G、點(diǎn)M,點(diǎn)D、點(diǎn)E分別是線段GM、BM上的動(dòng)點(diǎn),且始終保持ADAE,DHl于點(diǎn)H.猜想:DH在什么范圍內(nèi),BCDE?并說(shuō)明此時(shí)BCDE的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,CD為AB邊上的中線,過(guò)點(diǎn)D作DE⊥BC于E,過(guò)點(diǎn)C作AB的平行線與DE的延長(zhǎng)線交于點(diǎn)F,連接BF,AF.

(1)求證:四邊形BDCF為菱形:

(2)若四邊形BDCF的面積為24,CE:AC=2:3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì)兩省人口總數(shù)基本相同,2001A省的城鎮(zhèn)在校中學(xué)生人數(shù)為156萬(wàn),農(nóng)村在校中學(xué)生人數(shù)為72萬(wàn);B省的城鎮(zhèn)在校中學(xué)生人數(shù)為84萬(wàn),農(nóng)村在校中學(xué)生人數(shù)為103萬(wàn)李軍同學(xué)根據(jù)數(shù)據(jù)畫出下面兩個(gè)復(fù)合條形統(tǒng)計(jì)圖.

______ 更好反映兩省在校中學(xué)生總數(shù);

______ 更好地比較省城鎮(zhèn)和農(nóng)村在校中學(xué)生人數(shù);

說(shuō)說(shuō)兩種圖的特點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為△ABC外接圓⊙O的直徑,點(diǎn)P是線段CA延長(zhǎng)線上一點(diǎn),點(diǎn)E在圓上且滿足PE2=PAPC,連接CE,AE,OE,OE交CA于點(diǎn)D.
(1)求證:△PAE∽△PEC;
(2)求證:PE為⊙O的切線;
(3)若∠B=30°,AP= AC,求證:DO=DP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:MON=30°,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1、B2、B3在射線OM上,A1B1A2、A2B2A3A3B3A4均為等邊三角形,若OA1=a,則A6B6A7的邊長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知P點(diǎn)是∠AOB平分線上一點(diǎn),PC⊥OA,PD⊥OB,垂足為C、D.

(1)求證:∠PCD=∠PDC;

(2)求證:OP是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(﹣4,5),并與y軸交于點(diǎn)C,拋物線的對(duì)稱軸為直線x=﹣1,且拋物線與x軸交于另一點(diǎn)B.

(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;
(3)如圖2,若點(diǎn)M是直線x=﹣1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案