【題目】如圖,小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B,C兩點(diǎn)的俯角分別為60°和35°,已知大橋BC的長度為100m,且與地面在同一水平面上.求熱氣球離地面的高度.

(結(jié)果保留整數(shù),參考數(shù)據(jù):sin35°≈,cos35°≈,tan35°≈ ≈1.7)

【答案】熱氣球離地面的高119m.

【解析】試題分析:作AD⊥CB交CB所在直線于點(diǎn)D,利用銳角三角函數(shù)的定義求出CD及BD的長,利用BC=CD﹣BD即可得出結(jié)論.

試題解析:作AD⊥CB交CB所在直線于點(diǎn)D,由題知,

∠ACD=35°,∠ABD=60°,

∵在Rt△ACD中,∠ACD=35°,tan35°=,

∴CD=AD.

∵在Rt△ABD中,∠ABD=60°,tan60°==≈1.7,

∴BD=AD,

∴BC=CD﹣BD=AD﹣AD,

AD﹣AD=100,解得AD=119m.

答:熱氣球離地面的高119m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中是真命題的有( 。

①同位角相等②相等的角是對(duì)頂角③直角三角形的兩個(gè)銳角互余④三個(gè)內(nèi)角相等的三角形是等邊三角形⑤若|a|=|b|,則a2=b2

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點(diǎn)(-1,2)和(1,0),且與y

軸相交于負(fù)半軸。給出四個(gè)結(jié)論:①;②;③;④ ,其中正確結(jié)論的序

號(hào)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF的邊長為6cm,P是對(duì)角線BE上一動(dòng)點(diǎn),過點(diǎn)P作直線l與BE垂直,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)且以1cm/s的速度勻速平移至E點(diǎn).設(shè)直線l掃過正六邊形ABCDEF區(qū)域的面積為S(cm2),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),下列能反映S與t之間函數(shù)關(guān)系的大致圖象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個(gè)邊長為b的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙).那么通過計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果某一個(gè)數(shù)的一個(gè)平方根是﹣3,那么這個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式從左到右的變形,屬于因式分解的是( 。

A.8x2 y32x24 y3B. x+1)( x1)=x21

C.3x3y13 xy)﹣1D.x28x+16=( x42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中,ABDC,ABBC,AB=2cm,CD=4cm.以BC上一點(diǎn)O為圓心的圓經(jīng)過A、D兩點(diǎn),且,圓心O到弦AD的距離是____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=(k﹣3)x+2k﹣8

(1)若一次函數(shù)的圖象經(jīng)過原點(diǎn),求k的值;

(2)若一次函數(shù)的圖象與直線y=2x+1平行,求k的值;

(3)若一次函數(shù)y的值隨x的值的增大而減小,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案