【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點(diǎn)D是AB的中點(diǎn),E.F在射線AC與射線CB上運(yùn)動(dòng),且滿足AE=CF;當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)C的距離為1時(shí),則△DEF的面積為___________.

【答案】

【解析】解:E在線段ACADECDF中,AD=CD,A=DCF,AE=CF,∴△ADE≌△CDFSAS),同理CDE≌△BDF,四邊形CEDF面積是ABC面積的一半CE=1,CF=41=3∴△CEF的面積=CECF=,∴△DEF的面積=××=

E'AC延長線上AE'=CF',AC=BC=4ACB=90°,CE'=BF',ACD=CBD=45°,CD=AD=BD=,∴∠DCE'=DBF'=135°CDE'BDF'中,CD=BD,DCE′=DBF,CE′=BF∴△CDE'≌△BDF'SAS),DE'=DF',CDE'=BDF'∵∠CDE'+BDE'=90°,∴∠BDE'+BDF'=90°,即E'DF'=90°DE'2=CE'2+CD22CDCE'cos135°=1+8+2××=13,SE'DF'=DE'2=.故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=2 cm,AD=4cm,AC⊥BC,則△DBC比△ABC的周長長cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB、CD、EF相交于點(diǎn)OEFAB,OGCOF的平分線,OHDOG的平分線.

(1)AOCCOG=47,求DOF的大小;

(2)AOCDOH=829,求COH的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)要證明命題“平行四邊形的對(duì)邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.

求證:AB=CD,
(1)補(bǔ)全求證部分;
(2)請(qǐng)你寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用數(shù)軸解決問題:我們知道,若數(shù)軸上點(diǎn)表示的數(shù)是,點(diǎn)表示的數(shù)是,則、兩點(diǎn)間的距離記作,

(1)若,= ;

(2)若數(shù)軸上一點(diǎn)表示的數(shù)是,,=   ;

(3)若點(diǎn)表示的數(shù)是,已知,點(diǎn)的左邊,,點(diǎn)在點(diǎn)的右邊,,點(diǎn)以每秒的速度向右移動(dòng),同時(shí)點(diǎn)、點(diǎn)分別以每秒、的速度向左移動(dòng).設(shè)移動(dòng)時(shí)間為秒,那么是否有最小值?若有,求出最小值并寫出此時(shí)的取值范圍;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,B=48°,三角形的外角DACACF的平分線交于點(diǎn)E,AEC等于( )

A.56° B.66° C.76° D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點(diǎn),且與y軸交于點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn),拋物線的對(duì)稱軸DE交x軸于點(diǎn)E,連接BD.
(1)求經(jīng)過A,B,C三點(diǎn)的拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是線段BD上一點(diǎn),當(dāng)PE=PC時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,過點(diǎn)P作PF⊥x軸于點(diǎn)F,G為拋物線上一動(dòng)點(diǎn),M為x軸上一動(dòng)點(diǎn),N為直線PF上一動(dòng)點(diǎn),當(dāng)以F、M、G為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點(diǎn)上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,能判斷AB∥CE的條件是( )

A. ∠A=∠ACE B. ∠A=∠ECD C. ∠B=∠BCA D. ∠B=∠ACE

查看答案和解析>>

同步練習(xí)冊(cè)答案