如圖,直線y=x與雙曲線y=
4x
在第一象限的交點為點A,將直線沿y軸向下平移使其經(jīng)過雙曲線上的點B(a,1),且交y軸于點C.
(1)求點A的坐標及直線BC的解析式;
(2)求四邊形AOCB面積;
(3)在x軸上確定點P,使△ABP是以AB為直角邊的直角三角形.
分析:(1)聯(lián)立直線解析式及雙曲線的解析式解出交點,從而得出點A的坐標,求出點B的坐標,設BC的解析式為y=x+b,然后代入點B的坐標即可得出直線BC的解析式;
(2)分別表示出S四邊形AOCB、S梯形BEDC、S△ADO、S△AEB,繼而根據(jù)S四邊形AOCB=S梯形BEDC-S△ADO-S△AEB可得出答案.
(3)分兩種情況討論,①當∠PAB=90°時,②當∠PBA=90°時,分別求出點P的坐標即可.
解答:解:(1)∵點A在直線y=x和雙曲線y=
4
x
上,
y=x
y=
4
x
,
解得:
x1=2
x2=2
x2=-2
y2=-2
,
∵點A在第一象限,
∴點A的坐標為(2,2),
∵點B(a,1)在雙曲線y=
4
x
上,
∴1=
4
a
,
解得:a=4,
∴點B坐標為(4,1),
∵直線BC由直線y=x平移得到,
∴設BC的解析式為y=x+b,
將點B(4,1)代入,得b=-3,
∴直線BC的解析式為y=x-3.
(2)作AD⊥y軸于點D,BE⊥AD于點,可得直角梯形BEDC,

故可得點D(0,2),點E(4,2),點C(0,-3),EB=1,DC=5,DE=4,DA=2,DO=2,AE=2,
S梯形BEDC=
1
2
(EB+DC)×DE=
1
2
×(1+5)×4=12,
S△ADO=
1
2
AD×DO=
1
2
×2×2=2,
S△AEB=
1
2
AE×EB=
1
2
×2×1=1,
故可得S四邊形AOCB=S梯形BEDC-S△ADO-S△AEB=12-2-1=9.
(3)由點A(2,2),點B(4,1)可得直線AB:y=-
1
2
x+3,直線與x軸的交點G(6,0),
①當∠PAB=90°時,作AQ⊥x軸于點Q,可得OQ=2,AQ=2,QG=4,

則PQ•QG=AQ2,即PQ×4=22
故PQ=1,OP=OQ-PQ=2-1=1,
從而可得點P的坐標為(1,0);
②當∠PBA=90°時,作BH⊥x軸于點H,可得OH=4,BH=1,HG=2,

則PH×HG=BH2,即PH×2=12,
故PH=
1
2
,OP=OH-PH=4-
1
2
=
7
2
,
從而可得點P的坐標為(
7
2
,0);
點評:本題考查了反比例函數(shù)的綜合題,涉及了待定系數(shù)法求反比例函數(shù)的解析式、梯形及三角形的面積,難點在第三問,注意分類討論,不要漏解,需要同學們將所學知識融會貫通.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,帆船A和帆船B在太湖湖面上訓練,O為湖面上的一個定點,教練船靜候于點O,訓練時要求A、B兩船始終關于O點對稱.以O為原點,建立如圖所示的坐標系,x軸、y軸的正方向分別表示正東、正北方向.設A、B兩船可近似看成在雙曲線y=
4x
上運動,湖面風平浪靜,雙帆遠影優(yōu)美,訓練中檔教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).
(1)發(fā)現(xiàn)C船時,A、B、C三船所在位置的坐標分別為A(
 
,
 
)、B(
 
,
 
)和C(
 
,
 
);
(2)發(fā)現(xiàn)C船,三船立即停止訓練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,經(jīng)過點A,C,B的拋物線的一部分與經(jīng)過點A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網(wǎng)點,且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點A,E,B的拋物線的解析式;
(2)若點F在“雙拋物線”上,且S△FAP=S△CAP,請你直接寫出點F的坐標;
(3)如果一條直線與“雙拋物線”只有一個交點,那么這條直線叫做“雙拋物線”的切線.若過點E與x軸平行的直線與“雙拋物線”交于點G,求經(jīng)過點G的“雙拋物線”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式.
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m.為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸 上.設矩形ABCD的周長為l求l的最大值.
II•如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q.問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:湖南省中考真題 題型:解答題

九(1)班數(shù)學課題學習小組,為了研究學習二次函數(shù)問題,他們經(jīng)歷了實踐--應用--探究的過程:
(1)實踐:他們對一條公路上橫截面為拋物線的單向雙車道的隧道(如圖①)進行測量,測得一隧道的路面寬為10m,隧道頂部最高處距地面6.25m,并畫出了隧道截面圖,建立了如圖②所示的直角坐標系,請你求出拋物線的解析式;
(2)應用:按規(guī)定機動車輛通過隧道時,車頂部與隧道頂部在豎直方向上的高度差至少為0.5m,為了確保安全,問該隧道能否讓最寬3m,最高3.5m的兩輛廂式貨車居中并列行駛(兩車并列行駛時不考慮兩車間的空隙)?
(3)探究:該課題學習小組為進一步探索拋物線的有關知識,他們借助上述拋物線模型,提出了以下兩個問題,請予解答:
I.如圖③,在拋物線內(nèi)作矩形ABCD,使頂點C、D落在拋物線上,頂點A、B落在x軸上,設矩形ABCD的周長為l求l的最大值;
II.如圖④,過原點作一條y=x的直線OM,交拋物線于點M,交拋物線對稱軸于點N,P 為直線0M上一動點,過P點作x軸的垂線交拋物線于點Q,問在直線OM上是否存在點P,使以P、N、Q為頂點的三角形是等腰直角三角形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,帆船A和帆船B在太湖湖面上訓練,O為湖面上的一個定點,教練船靜候于O點,訓練時要求A、B兩船始終關于O點對稱.以O為原點,建立如圖所示的坐標系,x軸、y軸的正方向分別表示正東、正北方向.設A、B兩船可近似看成在雙曲線y=上運動,湖面風平浪靜,雙帆遠影優(yōu)美,訓練中當教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).

1.發(fā)現(xiàn)C船時,A、B、C三船所在位置的坐標分別為A(_______,_______)、B(_______,_______)和C(_______,_______);

2.發(fā)現(xiàn)C船,三船立即停止訓練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由

 

查看答案和解析>>

同步練習冊答案