9.計(jì)算:
(1)42-$\sqrt{64}$+$\root{3}{-27}$
(2)[(2x-y)(2x+y)+y(y-6x)]÷2x.

分析 (1)原式利用算術(shù)平方根及立方根定義計(jì)算即可得到結(jié)果;
(2)原式中括號(hào)中利用平方差公式,單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,再利用多項(xiàng)式除以單項(xiàng)式法則計(jì)算即可得到結(jié)果.

解答 解:(1)原式=16-8-3=5;    
(2)原式=(4x2-y2+y2-6xy)÷2x=(4x2-6xy)÷2x=2x-3y.

點(diǎn)評(píng) 此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.化簡(jiǎn)-$\sqrt{-{x}^{3}}$的結(jié)果是(  )
A.x$\sqrt{-x}$B.-x$\sqrt{-x}$C.x$\sqrt{x}$D.-x$\sqrt{x}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖1所示,在圖中作出兩條直線,就能使它們將圓面四等分.研究圖1中的思想方法解決以下問題:
(1)如圖2,M是正方形ABCD內(nèi)一定點(diǎn),請(qǐng)?jiān)趫D2中作出兩條直線(要求其中一條直線必須過點(diǎn)M),使它們將正方形ABCD的面積四等分,不必說明理由;
(2)如圖3,在四邊形ABCD中,AB∥CD,AB+CD=BC,點(diǎn)P是AD的中點(diǎn).如果AB=a,CD=b,且b>a,那么在邊BC上是否存在一點(diǎn)Q,使PQ所在直線將四邊形ABCD的面積分成相等的兩部分?若存在,求出BQ的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.若△ABC的邊長(zhǎng)均滿足關(guān)于x的方程x2-9x+8=0,則ABC的周長(zhǎng)是3或24或17.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.下列命題是真命題的是( 。
A.無(wú)限小數(shù)是無(wú)理數(shù)
B.三角形的外角和等于360°
C.相反數(shù)等于它本身的數(shù)是0和1
D.等邊三角形既是中心對(duì)稱圖形,又是軸對(duì)稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.若|x|=4,則x的值是( 。
A.-4B.4C.±4D.$\frac{1}{4}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.下列計(jì)算正確的是( 。
A.(m-2n)(m-n)=m2-3mn+2n2B.(m+1)2=m2-1
C.-m(m2-m-1)=-m3+m2-mD.(m+n)(m2+mn+n2)=m3+n2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:8-2×(-3)2+[(-2)×3]2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.解方程:x2+10x=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案