【題目】如圖,矩形ABCD的對角線AC、BD相交于點(diǎn)OABBC21,且BEAC,CEDB,連接DE,則tanEDC=(

A.B.C.D.

【答案】B

【解析】

過點(diǎn)EEF⊥直線DC交線段DC延長線于點(diǎn)F,連接OEBC于點(diǎn)G.根據(jù)鄰邊相等的平行四邊形是菱形即可判斷四邊形OBEC是菱形,則OEBC垂直平分,易得EF=xCF=x.再由銳角三角函數(shù)定義作答即可.

解:矩形ABCD的對角線AC、BD相交于點(diǎn)OABBC21,

∴BCAD,

設(shè)AB2x,則BCx

如圖,過點(diǎn)EEF⊥直線DC交線段DC延長線于點(diǎn)F,連接OEBC于點(diǎn)G

∵BE∥AC,CE∥BD,

四邊形BOCE是平行四邊形,

四邊形ABCD是矩形,

∴OBOC,

四邊形BOCE是菱形.

∴OEBC垂直平分,

∴EFADx,OE∥AB,

四邊形AOEB是平行四邊形,

∴OEAB2x,

∴CFOEx

∴tan∠EDC

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,點(diǎn)E在對角線AC上,點(diǎn)F在邊CD上,連接BE、EF.若∠EFC90°+CBEBE7,EF10.則點(diǎn)DEF的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+x+c經(jīng)過A40),B1,0)兩點(diǎn),與y軸交于點(diǎn)C

1)求該拋物線的解析式;

2)在直線AC上方的拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

如果函數(shù) yfx)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2

1)若 x1x2,都有 fx1)<fx2),則稱 fx)是增函數(shù);

2)若 x1x2,都有 fx1)>fx2),則稱 fx)是減函數(shù).

例題:證明函數(shù)fx)= x0)是減函數(shù).

證明:設(shè) 0x1x2,

fx1)﹣fx2)=

0x1x2,

x2x10,x1x20

0.即 fx1)﹣fx2)>0

fx1)>fx2).

∴函數(shù) fx= x0)是減函數(shù).

根據(jù)以上材料,解答下面的問題:

已知函數(shù)

f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=

1)計(jì)算:f(﹣3)= ,f(﹣4)= ;

2)猜想:函數(shù) 函數(shù)(填“增”或“減”);

3)請仿照例題證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點(diǎn)O,AEBD于點(diǎn)E,CFBD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:

①CF=AE;②OE=OF;③圖中共有四對全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點(diǎn)A是劣弧BC的中點(diǎn),點(diǎn)D是優(yōu)弧BC上一點(diǎn),且sinD,求證:四邊形ABOC為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)九年級學(xué)生身體素質(zhì)情況,該區(qū)從全區(qū)九年級學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育考試科目測試(把測試結(jié)果分為四個(gè)等級:A級;優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如圖兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

1)本次抽樣測試的學(xué)生是__;

2)求圖1的度數(shù)是 ,把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)該區(qū)九年級有學(xué)生名,如果全部參加這次體育科目測試,請估計(jì)不及格的人數(shù)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑為10的⊙A經(jīng)過點(diǎn)C(0,5)和點(diǎn)O (0,0),By軸右側(cè)⊙A優(yōu)弧上一點(diǎn),則∠OBC 的余弦值為 _________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩地相距,甲、乙兩輛貨車裝滿貨物分別從兩地相向而行,圖中分別表示甲、乙兩輛貨車離地的距離與行駛時(shí)間之間的函數(shù)關(guān)系.請你根據(jù)以上信息,解答下列問題:

1)分別求出直線所對應(yīng)的函數(shù)關(guān)系式;

2)何時(shí)甲貨車離地的距離大于乙貨車離地的距離?

查看答案和解析>>

同步練習(xí)冊答案