【題目】按要求畫圖:①僅用無刻度的直尺;②保留必要的畫圖痕跡.

1)如圖1,畫出⊙O的一個內(nèi)接矩形;

2)如圖2AB是⊙O的直徑,CD是⊙O的弦,且CDAB,畫出⊙O的一個內(nèi)接正方形.

【答案】1)見解析;(2)見解析.

【解析】

(1)根據(jù)對角線相等且互相平分的四邊形是矩形,畫出圓的兩條直徑,即可得到⊙O的一個內(nèi)接矩形;

(2)根據(jù)對角線相等且互相垂直平分的四邊形是正方形,畫出圓的一條直徑,使其與AB互相垂直,即可得到⊙O的內(nèi)接正方形.

(1)如圖所示,過O作⊙O的直徑ACBD,連接ABBC,CDDA,則四邊形ABCD即為所求;

(2)如圖所示,延長AC,BD交于點E,連接AD,BC交于點F,連接EF并延長交⊙OGH,連接AHHB,BGGA,則四邊形AHBG即為所求.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某政府在廣場上樹立了如圖所示的宣傳牌,數(shù)學興趣小組的同學想利用所學的知識測量宣傳牌的高度AB,在D處測得點A、B的仰角分別為38°、21°,已知CD=20m,點A、B、C在一條直線上,AC⊥DC,求宣傳牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,結果精確到1米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線為常數(shù),)經(jīng)過點,點軸正半軸上的動點.

(Ⅰ)當時,求拋物線的頂點坐標;

(Ⅱ)點在拋物線上,當,時,求的值;

(Ⅲ)點在拋物線上,當的最小值為時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 A,B 的坐標分別為(1,4)和(44), 拋物線 yaxm2+n 的頂點在線段 AB 上運動(拋物線隨頂點一起平移),與 x 軸交于 C、D 兩點(C D 的左側),點 C 的橫坐標最小值為﹣3 則點 D 的橫坐標最大值為(

A.3B.1C.5D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖點O是等邊內(nèi)一點,,∠ACD=BCO,OC=CD,

1)試說明:是等邊三角形;

2)當時,試判斷的形狀,并說明理由;

3)當為多少度時,是等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A為∠POQ的邊OQ上一點,以A為頂點的∠MAN的兩邊分別交射線OPM、N兩點,且∠MAN=∠POQαα為銳角).當∠MAN以點A為旋轉中心,AM邊從與AO重合的位置開始,按逆時針方向旋轉(∠MAN保持不變)時,設OMx,ONyyx≥0),AOM的面積為s,且cosα,OA是方程2z221z+100的兩根.

1)當∠MAN旋轉30°時,求點N移動的距離;

2)求證:AN2ONMN;

3)試求yx的函數(shù)關系及自變量的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州三中初中數(shù)學組深知人生最具好奇心和幻想力、創(chuàng)造力的時期是中學時代,經(jīng)研究,為我校每一個初中生推薦一本中學生素質(zhì)數(shù)育必讀書《數(shù)學的奧秘》,這本書就是專門為好奇的中學生準備的.這本書不但給于我們知識,解答生活中的疑惑,更重要的是培養(yǎng)我們細致觀察、認真思考、勤于動手的能力.經(jīng)過一學期的閱讀和學習,為了了解學生閱讀效果,我們從初一、初二的學生中隨機各選20名,對《數(shù)學的奧秘》此書閱讀效果做測試(此次測試滿分:100分).通過測試,我們收集到20名學生得分的數(shù)據(jù)如下:

初一

96

100

89

95

62

75

93

86

86

93

95

95

88

94

95

68

92

80

78

90

初二

100

98

96

95

94

92

92

92

92

92

86

84

83

82

78

78

74

64

60

92

通過整理,兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)和方差如表:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

初一

87.5

91

m

96.15

初二

86.2

n

92

113.06

某同學將初一學生得分按分數(shù)段(,,,),繪制成頻數(shù)分布直方圖,初二同學得分繪制成扇形統(tǒng)計圖,如圖(均不完整),初一學生得分頻數(shù)分布直方圖 初二學生得分扇形統(tǒng)計圖(注:x表示學生分數(shù))

請完成下列問題:

1)初一學生得分的眾數(shù)________;初二學生得分的中位數(shù)________;

2)補全頻數(shù)分布直方圖;扇形統(tǒng)計圖中,所對用的圓心角為________度;

3)經(jīng)過分析________學生得分相對穩(wěn)定(填初一初二);

4)你認為哪個年級閱讀效果更好,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,B3,﹣1)是反比函數(shù)y圖象上的一點,過B點的一次函數(shù)y=﹣x+b與反比例函數(shù)交于另一點A

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)求AOB面積;

3)在A點左邊的反比例函數(shù)圖象上求點P,使得SPOASAOB32

查看答案和解析>>

同步練習冊答案