【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x軸上,點(diǎn)A在y軸的正半軸上,點(diǎn)A,D的坐標(biāo)分別為A(0,2),D(2,2),AB=2,連接AC.
(1)求出直線AC的函數(shù)解析式;
(2)求過(guò)點(diǎn)A,C,D的拋物線的函數(shù)解析式;
(3)在拋物線上有一點(diǎn)P(m,n)(n<0),過(guò)點(diǎn)P作PM垂直于x軸,垂足為M,連接PC,使以點(diǎn)C,P,M為頂點(diǎn)的三角形與Rt△AOC相似,求出點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x+2;(2)y=﹣x2+x+2;(3)點(diǎn)P的坐標(biāo)為(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).
【解析】
試題分析:(1)先在Rt△ABO中,運(yùn)用勾股定理求出OB===2,得出B(﹣2,0),再根據(jù)等腰梯形的對(duì)稱性可得C點(diǎn)坐標(biāo)為(4,0),又A(0,2),利用待定系數(shù)法即可求出直線AC的函數(shù)解析式;
(2)設(shè)所求拋物線的解析式為y=ax2+bx+c,將A,C,D三點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法即可求出拋物線的函數(shù)解析式;
(3)先由點(diǎn)P(m,n)(n<0)在拋物線y=﹣x2+x+2上,得出m<﹣2或m>4,n=﹣m2+m+2<0,于是PM=m2﹣m﹣2.由于∠PMC=∠AOC=90°,所以當(dāng)Rt△PCM與Rt△AOC相似時(shí),有==或==2.再分兩種情況進(jìn)行討論:①若m<﹣2,則MC=4﹣m.由==,列出方程=,解方程求出m的值,得到點(diǎn)P的坐標(biāo)為(﹣4,﹣4);由==2,列出方程=2,解方程求出m的值,得到點(diǎn)P的坐標(biāo)為(﹣10,﹣28);②若m>4,則MC=m﹣4.由==時(shí),列出方程=,解方程求出m的值均不合題意舍去;由==2,列出方程=2,解方程求出m的值,得到點(diǎn)P的坐標(biāo)為(6,﹣4).
解:(1)由A(0,2)知OA=2,
在Rt△ABO中,∵∠AOB=90°,AB=2,
∴OB===2,
∴B(﹣2,0).
根據(jù)等腰梯形的對(duì)稱性可得C點(diǎn)坐標(biāo)為(4,0).
設(shè)直線AC的函數(shù)解析式為y=kx+n,
則,解得,
∴直線AC的函數(shù)解析式為y=﹣x+2;
(2)設(shè)過(guò)點(diǎn)A,C,D的拋物線的函數(shù)解析式為y=ax2+bx+c,
則,解得,
∴y=﹣x2+x+2;
(3)∵點(diǎn)P(m,n)(n<0)在拋物線y=﹣x2+x+2上,
∴m<﹣2或m>4,n=﹣m2+m+2<0,
∴PM=m2﹣m﹣2.
∵Rt△PCM與Rt△AOC相似,
∴==或==2.
①若m<﹣2,則MC=4﹣m.
當(dāng)==時(shí),=,
解得m1=﹣4,m2=4(不合題意舍去),
此時(shí)點(diǎn)P的坐標(biāo)為(﹣4,﹣4);
當(dāng)==2時(shí),=2,
解得m1=﹣10,m2=4(不合題意舍去),
此時(shí)點(diǎn)P的坐標(biāo)為(﹣10,﹣28);
②若m>4,則MC=m﹣4.
當(dāng)==時(shí),=,
解得m1=4,m2=0,均不合題意舍去;
當(dāng)==2時(shí),=2,
解得m1=6,m2=4(不合題意舍去),
此時(shí)點(diǎn)P的坐標(biāo)為(6,﹣4);
綜上所述,所求點(diǎn)P的坐標(biāo)為(﹣4,﹣4)或(﹣10,﹣28)或(6,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將多項(xiàng)式ax2-4ax+4a分解因式,下列結(jié)果中正確( )
A. a(x-2)2 B. a(x+2)2
C. a(x-4)2 D. a(x+2)(x-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)二班在訂購(gòu)本班的班服前,按身高型號(hào)進(jìn)行登記,對(duì)女生的記錄中,身高150cm以下記為S號(hào),150160cm以下記為M號(hào),160170cm以下記為L(zhǎng)號(hào).170cm 以上記為XL號(hào).若用統(tǒng)計(jì)圖描述這些數(shù)據(jù),合適的統(tǒng)計(jì)圖是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.
(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP、OP、OA.
①求證:△OCP∽△PDA;
②若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng);
(2)若圖1中的點(diǎn)P恰好是CD邊的中點(diǎn),求∠OAB的度數(shù);
(3)如圖2,,擦去折痕AO、線段OP,連結(jié)BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連結(jié)MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)當(dāng)點(diǎn)M、N在移動(dòng)過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求出線段EF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等式ax=ay,下列變形不正確的是( 。
A.x=y
B.ax+1=ay+1
C.2ax=2ay
D.3﹣ax=3﹣ay
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一枚棋子放在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正六邊形ABCDEF的頂點(diǎn)A處,通過(guò)摸球來(lái)確定該棋子的走法,其規(guī)則是:在一只不透明的袋子中,裝有3個(gè)標(biāo)號(hào)分別為1、2、3的相同小球,攪勻后從中任意摸出1個(gè),記下標(biāo)號(hào)后放回袋中并攪勻,再?gòu)闹腥我饷?個(gè),摸出的兩個(gè)小球標(biāo)號(hào)之和是幾棋子就沿邊按順時(shí)針?lè)较蜃邘讉(gè)單位長(zhǎng)度.
棋子走到哪一點(diǎn)的可能性最大?求出棋子走到該點(diǎn)的概率.(用列表或畫樹(shù)狀圖的方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年山東省高考報(bào)名人數(shù)位居全國(guó)第三,約有696000人報(bào)名,將696000用科學(xué)記數(shù)法表示為( )
A.69.6×104
B.6.96×105
C.6.96×106
D.0.696×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com