【題目】現(xiàn)今“微信運動”被越來越多的人關(guān)注和喜愛,某興趣小組隨機調(diào)查了我市50名教師某日“微信運動”中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04


請根據(jù)以上信息,解答下列問題:
(1)寫出a,b,c,d的值并補全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

【答案】
(1)解:a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,

補全頻數(shù)分布直方圖如下:


(2)解:37800×(0.2+0.06+0.04)=11340,

答:估計日行走步數(shù)超過12000步(包含12000步)的教師有11340名


(3)解:設(shè)16000≤x<20000的3名教師分別為A、B、C,

20000≤x<24000的2名教師分別為X、Y,

畫樹狀圖如下:

由樹狀圖可知,被選取的兩名教師恰好都在20000步(包含20000步)以上的概率為 =


【解析】(1)根據(jù)頻率=頻數(shù)÷總數(shù)可得答案;(2)用樣本中超過12000步(包含12000步)的頻率之和乘以總?cè)藬?shù)可得答案;(3)畫樹狀圖列出所有等可能結(jié)果,根據(jù)概率公式求解可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定直線l:y=kx,拋物線C:y=ax2+bx+1.

(1)當b=1時,l與C相交于A,B兩點,其中A為C的頂點,B與A關(guān)于原點對稱,求a的值;
(2)若把直線l向上平移k2+1個單位長度得到直線l′,則無論非零實數(shù)k取何值,直線l′與拋物線C都只有一個交點.
①求此拋物線的解析式;
②若P是此拋物線上任一點,過P作PQ∥y軸且與直線y=2交于Q點,O為原點.求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0; 的最小值為3.其中正確的是(
A.①②③
B.②③④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF;
②當AB=4,AD= 時,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是軸對稱圖形,不是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣ x﹣ 與x,y軸分別交于點A,B,與反比例函數(shù)y= 的圖象在第二象限交于點C,過點A作x軸的垂線交該反比例函數(shù)圖象于點D.若AD=AC,則點D的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△OPA和△OQB分別是以O(shè)P、OQ為直角邊的等腰直角三角形,點C、D、E分別是OA、OB、AB的中點.

(1)當∠AOB=90°時如圖1,連接PE、QE,直接寫出EP與EQ的大小關(guān)系;
(2)將△OQB繞點O逆時針方向旋轉(zhuǎn),當∠AOB是銳角時如圖2,(1)中的結(jié)論是否成立?若成立,請給出證明;若不成立,請加以說明.
(3)仍將△OQB繞點O旋轉(zhuǎn),當∠AOB為鈍角時,延長PC、QD交于點G,使△ABG為等邊三角形如圖3,求∠AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線L:y=﹣ (x﹣t)(x﹣t+4)(常數(shù)t>0)與x軸從左到右的交點為B,A,過線段OA的中點M作MP⊥x軸,交雙曲線y= (k>0,x>0)于點P,且OAMP=12.

(1)求k的值;
(2)當t=1時,求AB長,并求直線MP與L對稱軸之間的距離;
(3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點)記為G,用t表示圖象G最高點的坐標.

查看答案和解析>>

同步練習(xí)冊答案