【題目】如圖,過原點(diǎn)的直線和與反比例函數(shù)的圖象分別交于兩點(diǎn)和,連結(jié).
(1)四邊形一定是什么四邊形;(直接寫結(jié)果)
(2)四邊形可能是矩形嗎?若可能,求此時(shí)和之間的關(guān)系式;若不可能,說(shuō)明理由;
(3)設(shè)是函數(shù)圖象上的任意兩點(diǎn),,請(qǐng)判斷的大小關(guān)系,并說(shuō)明理由.
【答案】(1)平行四邊形;(2)可能,k1k2=1;(3)a>b,見解析
【解析】
(1)根據(jù)直線和與反比例函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,即可確定;
(2)聯(lián)立方程求得A、B點(diǎn)的坐標(biāo),然后根據(jù)OA=OB,依據(jù)勾股定理得出,兩邊平分得,整理后得(k1-k2)(k1k2-1)=0,根據(jù)k1≠k2,則k1k2-1=0,即可解答;
(3)由(x1,y1),Q(x2,y2)(x2>x1>0)是函數(shù)圖像上的任意兩點(diǎn),可得,求出,得到即可解答.
解:(1)∵直線和與反比例函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,
∴OA=OC,OB=OD
∴四邊形ABCD是平行四邊形
(2)若四邊形ABCD是矩形時(shí),OA=OB
設(shè)A(x’,y’), 則y’=k1x’, y’=1/x’得x’2=
∴OA2 = x’2 + y’2 =+ k1,同理OB2=+ k2,
∴+ k1 =+ k2 ,得(k1 –k2)(- 1)= 0
∵k2 – k1 ≠ 0, ∴– 1 = 0
∴k1k2=1
所以四邊形ABCD可以是矩形,此時(shí)k1k2=1
(3)∵由(x1,y1),Q(x
∴
∴
∵
∵x2 > x1 > 0,
∴(x1– x2)2 > 0,2x1x2 (x1+ x2)> 0
∴
∴a > b
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“防疫有我,愛衛(wèi)同行”,為切實(shí)開展愛國(guó)衛(wèi)生運(yùn)動(dòng),某校決定在校園組織系列衛(wèi)生清掃活動(dòng),參加人員從全校各部門自愿報(bào)名的教師中隨機(jī)抽。?dāng)?shù)學(xué)組有位教師報(bào)名參加第一次清掃活動(dòng),位教師分別記為甲、乙、丙、。
(1)如果需從這位教師中隨機(jī)抽取名教師,求抽到教師甲的概率;
(2)如果需從這位教師中隨機(jī)抽取名教師,請(qǐng)用列表或畫樹狀圖的方法,求出抽到教師乙和丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶要改造部分農(nóng)田種植蔬菜.經(jīng)調(diào)查,改造農(nóng)田費(fèi)用(元)與改造面積(畝)成正比,比例系數(shù)為900,添加輔助設(shè)備費(fèi)用(元)與改造面積(畝)的平方成正比,比例系數(shù)為18,以上兩項(xiàng)費(fèi)用三年內(nèi)不需再投入;每畝種植蔬菜還需種子、人工費(fèi)用600元.這項(xiàng)費(fèi)用每年均需再投入.除上述費(fèi)用外,沒有其他費(fèi)用.設(shè)改造畝,每畝蔬菜年銷售額為元.
(1)設(shè)改造當(dāng)年收益為元,用含,的式子表示;
(2)按前三年計(jì)算,若,是否改造面積越大收益越大?改造面積為多少時(shí),可以得到最大收益?
(3)按前三年計(jì)算,若,當(dāng)收益不低于43200元時(shí),求改造面積的取值范圍.
注:收益銷售額(改造費(fèi)輔助設(shè)備費(fèi)種子、人工費(fèi)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)若點(diǎn)M為拋物線的頂點(diǎn),連接BC、CM、BM,求△BCM的面積;
(3)連接AC,在x軸上是否存在點(diǎn)P使△ACP為等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知的中,按以下步驟:(1)分別以、為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交、;(2)作直線,交于,連結(jié),若,,則下列結(jié)論中錯(cuò)誤的是( )
A.直線是線段的垂直平分線B.點(diǎn)為的外心
C.D.點(diǎn)為的內(nèi)心
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對(duì)角線AC于點(diǎn)E,F,連接BE,DF.
(1)求證:AE=CF;
(2)若BE=DE,求證:四邊形EBFD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,∠ABC=45°,點(diǎn)E為射線AD上一動(dòng)點(diǎn),連接BE,將BE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BF,連接AF,則AF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC和△ADE按如圖所示方式放置,點(diǎn)D在△ABC內(nèi),連接BD、CD和CE,且∠DCE=90°.
(1)如圖①,當(dāng)△ABC和△ADE均為等邊三角形時(shí),試確定AD、BD、CD三條線段的關(guān)系,并說(shuō)明理由;
(2)如圖②,當(dāng)BA=BC=2AC,DA=DE=2AE時(shí),試確定AD、BD、CD三條線段的關(guān)系,并說(shuō)明理由;
(3)如圖③,當(dāng)AB:BC:AC=AD:DE:AE=m:n:p時(shí),請(qǐng)直接寫出AD、BD、CD三條線段的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com