【題目】如圖,在中,,,分別為,邊上的高,連接,過點與點,中點,連接,

1)如圖,若點與點重合,求證:;

2)如圖,請寫出之間的關系并證明.

【答案】(1)詳見解析;(2)AF=2DG,AFDG,證明詳見解析.

【解析】

(1) 利用條件先△DAE≌△DBF,從而得出△FDE是等腰直角三角形,再證明AEF是等腰直角三角形,即可.

(2) 延長DG至點M,使GM=DG,AF于點H,連接BM, 先證明BGM≌△EGD,再證明△BDM≌△DAF即可推出.

:1)證明:BEAD交于點H..如圖,

AD,BE分別為BC,AC邊上的高,

∴∠BEA=ADB=90°.

∵∠ABC=45°,

∴△ABD是等腰直角三角形.

AD=BD.

∵∠AHE=BHD,

∴∠DAC=DBH.

∵∠ADB=FDE=90°,

∴∠ADE=BDF.

∴△DAE≌△DBF.

BF=AE,DF=DE.

∴△FDE是等腰直角三角形.

∴∠DFE=45°.

GBE中點,

BF=EF.

AE=EF.

AEF是等腰直角三角形.

∴∠AFE=45°.

∴∠AFD=90°,AFDF.

2AF=2DG,AFDG.理由:延長DG至點M,使GM=DG,AF于點H,連接BM,

∵點GBE的中點,BG=GE.

∵∠BGMEGD,

BGM≌△EGD.

∴∠MBE=FED=45°,BM=DE.

∴∠MBE=EFD,BM=DF.

∵∠DAC=DBE,

∴∠MBD=MBE+DBE=45°+DBE.

∵∠EFD=45°=DBE+BDF,

∴∠BDF=45°-DBE.

∵∠ADE=BDF,

∴∠ADF=90°-BDF=45°+DBE=MBD.

BD=AD,

∴△BDM≌△DAF.

DM=AF=2DG,FAD=BDM.

∵∠BDM+MDA=90°,

∴∠MDA+FAD=90°.

∴∠AHD=90°.

AFDG.

AF=2DG,AFDG

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學需要刻錄一批電腦光盤,若到電腦公司刻錄,每張需8元(包括空白光盤費);若學校自刻,出租用刻錄機需120元外,每張光盤還需成本4元(包括空白光盤費)。問刻錄這批電腦光盤,該校如何選擇,才能使費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1,RtABC,ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結AD、CF,ADCF交于點M;

(1)求證:ABD≌△FBC

(2) 如圖(2),已知AD=6,求四邊形AFDC的面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,邊的垂直平分線,連接

(1)求證:;

(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,, ,,都是等腰直角三角形,其中點 ,,軸上,點, 在直線上,已知,則的長為______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一傘狀圖形,已知,點角平分線上一點,且,交于點,交于點

(1)如圖一,當重合時,探索,的數(shù)量關系

(2)如圖二,將(1)的情形下繞點逆時針旋轉(zhuǎn),繼續(xù)探索,的數(shù)量關系,并求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,點P從點A出發(fā)沿AB→BC→CD3cm/s的速度向終點D勻速運動,同時,點Q從點A出發(fā)沿AD1cm/s的速度向終點D勻速運動,設P點運動的時間為ts,APQ的面積為Scm2,下列選項中能表示St之間函數(shù)關系的是(  )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案