【題目】如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動(dòng),移動(dòng)開始前點(diǎn)A與點(diǎn)F重合,在移動(dòng)過程中,邊AD始終與邊FG重合,連接CG,過點(diǎn)A作CG的平行線交線段GH于點(diǎn)P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG,GH的長分別為4cm,3cm,設(shè)正方形移動(dòng)時(shí)間為x(s),線段GP的長為y(cm),其中0≤x≤2.5.
(1)試求出y關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)y=3時(shí)相應(yīng)x的值;
(2)記△DGP的面積為S1 , △CDG的面積為S2 . 試說明S1﹣S2是常數(shù);
(3)當(dāng)線段PD所在直線與正方形ABCD的對角線AC垂直時(shí),求線段PD的長.
【答案】
(1)解:∵CG∥AP,
∴∠CGD=∠GAP,
又∵∠CDG=∠AGP,
∴△GCD∽△APG,
∴ ,
∵GF=4,CD=DA=1,AF=x,
∴GD=3﹣x,AG=4﹣x,
∴ = ,即y= ,
∴y關(guān)于x的函數(shù)關(guān)系式為y= ,
當(dāng)y=3時(shí), =3,解得x=2.5,
經(jīng)檢驗(yàn)的x=2.5是分式方程的根.
故x的值為2.5
(2)解:∵S1= GPGD= (3﹣x)= (cm2),
S2= GDCD= (3﹣x)×1= (cm2),
∴S1﹣S2= ﹣ = (cm2),即為常數(shù)
(3)解:延長PD交AC于點(diǎn)Q.
∵正方形ABCD中,AC為對角線,
∴∠CAD=45°,
∵PQ⊥AC,
∴∠ADQ=45°,
∴∠GDP=∠ADQ=45°.
∴△DGP是等腰直角三角形,則GD=GP,
∴3﹣x= ,
化簡得:x2﹣5x+5=0.
解得:x= ,
∵0≤x≤2.5,
∴x= ,
在Rt△DGP中,PD= = (3﹣x)= (cm)
【解析】(1)根據(jù)題意表示出AG、GD的長度,再由△GCD∽△APG,利用對應(yīng)邊成比例可解出x的值.(2)利用(1)得出的y與x的關(guān)系式表示出S1、S
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰直角三角形和矩形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;矩形的四個(gè)角都是直角,矩形的對角線相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確!鱋BC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達(dá),雷達(dá)的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)
(1)若三艘軍艦要對△OBC海域進(jìn)行無盲點(diǎn)監(jiān)控,則雷達(dá)的有效探測半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時(shí)刻軍艦B測得A位于北偏東60°方向上,同時(shí)軍艦C測得A位于南偏東30°方向上,求此時(shí)敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20 海里/小時(shí)的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三(1)班共有40名同學(xué),在一次30秒打字速度測試中他們的成績統(tǒng)計(jì)如表:
打字?jǐn)?shù)/個(gè) | 50 | 51 | 59 | 62 | 64 | 66 | 69 |
人數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個(gè)字)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補(bǔ)全頻數(shù)分布直方圖;
(2)這個(gè)班同學(xué)這次打字成績的眾數(shù)是個(gè),平均數(shù)是個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在梯形ABCD中,AD∥BC,∠A=60°,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以1cm/s的速度沿著A→B→C→D的方向不停移動(dòng),直到點(diǎn)P到達(dá)點(diǎn)D后才停止.已知△PAD的面積S(單位:cm2)與點(diǎn)P移動(dòng)的時(shí)間(單位:s)的函數(shù)如圖②所示,則點(diǎn)P從開始移動(dòng)到停止移動(dòng)一共用了秒(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2;
(3)點(diǎn)C1的坐標(biāo)是;點(diǎn)C2的坐標(biāo)是;過C、C1、C2三點(diǎn)的圓的圓弧 的長是(保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生參加家務(wù)勞動(dòng)的情況,某中學(xué)隨機(jī)抽取部分學(xué)生,統(tǒng)計(jì)他們雙休日兩天家務(wù)勞動(dòng)的時(shí)間,將統(tǒng)計(jì)的勞動(dòng)時(shí)間(單位:分鐘)分成5組:30≤x<60,60≤x<90,90≤x<120,120≤x<150,150≤x<180,繪制成頻數(shù)分布直方圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是;
(2)根據(jù)小組60≤x<90的組中值75,估計(jì)該組中所有數(shù)據(jù)的和為;
(3)該中學(xué)共有1000名學(xué)生,估計(jì)雙休日兩天有多少名學(xué)生家務(wù)勞動(dòng)的時(shí)間不小于90分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖說故事. 請你編寫一個(gè)故事,使故事情境中出現(xiàn)的一對變量x、y滿足圖示的函數(shù)關(guān)系,要求:
(1)指出變量x和y的含義;
(2)利用圖中的數(shù)據(jù)說明這對變量變化過程的實(shí)際意義,其中須涉及“速度”這個(gè)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期六,小亮從家里騎自行車到同學(xué)家去玩,然后返回,圖是他離家的路程y(千米)與時(shí)間x(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法不一定正確的是( )
A.小亮到同學(xué)家的路程是3千米
B.小亮在同學(xué)家逗留的時(shí)間是1小時(shí)
C.小亮去時(shí)走上坡路,回家時(shí)走下坡路
D.小亮回家時(shí)用的時(shí)間比去時(shí)用的時(shí)間少
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com