【題目】如圖,直線l上依次有三點A、B、C,且AB=8、BC=16,點P為射線AB上一動點,將線段AP進行翻折得到線段PA′(點A落在直線l上點A′處、線段AP上的所有點與線段PA′上的點對應(yīng)).
(1)若翻折后A′C=2,則翻折前線段AP= .
(2)若點P在線段BC上運動,點M為線段A′C的中點,直接寫出線段PM的長度.
【答案】(1)11或13;(2)12.
【解析】
(1)分兩種情況討論:①A′落在C的左側(cè);②A′落在C的右側(cè);
(2)分①當A′在線段BC上,②當A′在l上且在C的右側(cè),進行討論即可求解.
(1)①當A′落在C的左側(cè)時,AC=AB+BC=8+16=24,AA′=AC﹣A′C=24﹣2=22.
AP=22÷2=11;
②當A′落在C的右側(cè)時,AC=AB+BC=8+16=24,AA′=AC+A′C=24+2=26.
AP=26÷2=13.
故答案為:11或13;
(2)①如備用圖1,當A′在線段BC上,由題知PA=PA′.
∵M為A′C中點,∴MA′=MC,∴PM=PA′+A′M=AA′+AC=×AC=×24=12;
②如備用圖2,當A′在直線l上且在C的右側(cè).
∵M為A′C中點,∴MA′=MC,∴PM=PA′﹣A′M=AA′﹣A′C=AC=×24=12.
綜上所述:PM=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知直線 AB、CD 相交于點 O,∠COE=90°
(1)若∠AOC=36°,求∠BOE 的度數(shù);
(2)若∠BOD:∠BOC=1:5,求∠AOE 的度數(shù).
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923292236627968/1924724835590144/STEM/dc8ee683cff64dfdb92368e07f9f9b9d.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合作探究:你了解嗎?駱駝被稱為“沙漠之舟”,它的體溫隨時間的變化而發(fā)生較大的變化,觀察圖象回答下列問題:
(1)一天中,駱駝的體溫的變化范圍是 , 它的體溫從最低上升到最高需要時.
(2)從16時到24時,駱駝的體溫下降了度.
(3)從時到時,駱駝的體溫在上升,從時到時,從 時到時駱駝的體溫在下降.
(4)你能看出第二天8時駱駝的體溫與第一天8時的體溫的關(guān)系是 .
(5)A點表示的是 , 還有時的溫度與A點所表示的溫度相同?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列三行數(shù)
①﹣3,9,﹣27,81,﹣243,……
②﹣5,7,﹣29,79,﹣245,……
③﹣1,3,﹣9,27,﹣81,……
第①行數(shù)排列律是_____;第②行數(shù)與第①行數(shù)的關(guān)系是_____;第③行數(shù)與第①行數(shù)的關(guān)系是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.
(1)a=﹣1,b=﹣2時,求4A﹣(3A﹣2B)的值;
(2)若(1)中式子的值與a的取值無關(guān),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張明同學(xué)設(shè)計了某個產(chǎn)品的正方體包裝盒如圖所示,由于粗心少設(shè)計了其中一個頂蓋,請你把它補上,使其成為一個兩面均有蓋的正方體盒子.
(1)共有 種彌補方法;
(2)任意畫出一種成功的設(shè)計圖(在圖中補充);
(3)在你幫忙設(shè)計成功的圖中,要把﹣8,10,﹣12,8,﹣10,12這些數(shù)字分別填入六個小正方形,使得折成的正方體相對面上的兩個數(shù)相加得0.(直接在圖中填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)﹣28﹣(﹣15)+(﹣17)﹣(+5)
(2)(﹣72)×2
(3)
(4)
(5)3m2﹣mn﹣2m2+4mn
(6)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com