【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA5,PB12,PC13,若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△PAB,求點P與點P′之間的距離及∠APB的度數(shù).

【答案】5,150°

【解析】

連接PP′,根據(jù)旋轉(zhuǎn)的性質(zhì)與等邊三角形的判定可證得△AP′P為等邊三角形,則PP′AP5∠APP′60°,在△BPP′中,利用勾股定理的逆定理易證△BPP′為直角三角形,∠BPP′90°,然后計算求解即可.

解:如圖,連接PP′,

∵△ABC為等邊三角形,

∴ABAC,∠BAC60°

∵△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB,

∴∠P′AP∠BAC60°AP′AP,BP′CP13,

∴△AP′P為等邊三角形,

∴PP′AP5∠APP′60°,

△BPP′中,

∵PP′5,BP12BP′13,

∴PP′2BP2BP′2

∴△BPP′為直角三角形,∠BPP′90°,

∴∠APB∠APP′∠BPP′60°90°150°

即點P與點P′之間的距離為5,∠APB的度數(shù)為150°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)九年級數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,得到某種運動服每月的銷量與售價的相關(guān)信息如下表:

售價(元/件)

100

110

120

130


月銷量(件)

200

180

160

140


已知該運動服的進價為每件60元,設(shè)售價為元.

1)請用含x的式子表示:銷售該運動服每件的利潤是 元;月銷量是 件;(直接寫出結(jié)果)

2)設(shè)銷售該運動服的月利潤為元,那么售價為多少時,當月的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,⊙O內(nèi)切于ABC,BOC=105°,ACB=90°,AB=20cm.求BC、AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在勾股章中有這樣一個問題:今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?

用今天的話說,大意是:如圖,是一座邊長為200步(是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列這些美麗的圖案都是在幾何畫板軟件中利用旋轉(zhuǎn)的知識在一個圖案的基礎(chǔ)上加工而成的,每一個圖案都可以看作是它的基本圖案繞著它的旋轉(zhuǎn)中心旋轉(zhuǎn)得來的,旋轉(zhuǎn)的角度正確的為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD為正方形,點E為線段AC上一點,連接DE,過點EEFDE,交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG。

(1)求證:矩形DEFG是正方形。

(2)當點EA點運動到C點時;

①求證:∠DCG的大小始終不變;

②若正方形ABCD的邊長為2,則點G運動的路徑長為 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,C=90°A=30°,BC=1,將另一個含30°角的EDF30°角的頂點D放在AB邊上,E、F分別在AC、BC上,當點DAB邊上移動時,DE始終與AB垂直,若CEFDEF相似,則AD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝超市購進單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設(shè)銷售單價為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?

3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+圖象與x軸,y軸分別相交于A、B兩點,與反比例函數(shù)y=(k≠0)的圖象相交于點E、F,過F作y軸的垂線,垂足為點C,已知點A(﹣3,0),點F(3,t).

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)求點E的坐標并求△EOF的面積;

(3)結(jié)合該圖象寫出滿足不等式﹣ax≤的解集.

查看答案和解析>>

同步練習(xí)冊答案