【答案】1.1×107

【考點】科學(xué)記數(shù)法—表示較大的數(shù).

【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).

【解答】將11000000用科學(xué)記數(shù)法表示為:1.1×107

故答案為:1.1×107

【點評】此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.

如圖所示,直線a//b,∠1=130°,∠2=70°,則∠3的度數(shù)是___________。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

第六次全國人口普查工作圓滿結(jié)束,2011年5月20日《遵義晚報》報到了遵義市人口普查結(jié)果,并根據(jù)我市常住人口情況,繪制出不同年齡的扇形統(tǒng)計圖;普查結(jié)果顯示,2010年我市常住人口中,每10萬人就有4402人具有大學(xué)文化程度,與2000年第五次人口普查相比,是2000年每10萬人具有大學(xué)文化程度人數(shù)的3倍少473人,請根據(jù)以上信息,【答案】下列問題.
(1)65歲及以上人口占全市常住人口的百分比是 9.27% ;
(2)我市2010年常住人口約為 612.7 萬人(結(jié)果保留四個有效數(shù)字);
(3)與2000年我市常住人口654.4萬人相比,10年間我市常住人口減少 41.67 萬人;
(4)2010年我市每10萬人口中具有大學(xué)文化程度人數(shù)比2000年增加了多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年貴州省遵義市中考數(shù)學(xué)真題試卷(解析版).doc 題型:解答題

第六次全國人口普查工作圓滿結(jié)束,2011年5月20日《遵義晚報》報到了遵義市人口普查結(jié)果,并根據(jù)我市常住人口情況,繪制出不同年齡的扇形統(tǒng)計圖;普查結(jié)果顯示,2010年我市常住人口中,每10萬人就有4402人具有大學(xué)文化程度,與2000年第五次人口普查相比,是2000年每10萬人具有大學(xué)文化程度人數(shù)的3倍少473人,請根據(jù)以上信息,【答案】下列問題.
(1)65歲及以上人口占全市常住人口的百分比是 9.27% ;
(2)我市2010年常住人口約為 612.7 萬人(結(jié)果保留四個有效數(shù)字);
(3)與2000年我市常住人口654.4萬人相比,10年間我市常住人口減少 41.67 萬人;
(4)2010年我市每10萬人口中具有大學(xué)文化程度人數(shù)比2000年增加了多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了加強食品安全管理,有關(guān)部門對某大型超市的甲、乙兩種品牌食用油共抽取18瓶進(jìn)行檢測,檢測結(jié)果分成“優(yōu)秀”、“合格”、“不合格”三個等級,數(shù)據(jù)處理后制成以下折線統(tǒng)計圖和扇形統(tǒng)計圖.

⑴甲、乙兩種品牌食用油各被抽取了多少瓶用于檢測?

⑵在該超市購買一瓶乙品牌食用油,請估計能買到“優(yōu)秀”等級的概率是多少?

【解題思路】(1)分別觀察折線和扇形圖不合格的1瓶占甲的10%,所以甲被抽取了10瓶,已被抽取了:18-10=8瓶。

(2)結(jié)合兩圖及問題(1)得乙優(yōu)秀的瓶數(shù)共瓶,所以優(yōu)秀率為

【答案】

⑴(由不合格瓶數(shù)為1知道甲不合格的瓶數(shù)為1)甲、乙分別被抽取了10瓶、8瓶

⑵P(優(yōu)秀)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【解題思路】(1)如下表

甲(s)

乙(t)

紅桃3

紅桃4

黑桃5

紅桃3

紅桃4

黑桃5

由上表可知:︱s-t︱≥1的概率= =    (也可畫樹形圖求解)。

(2)方案A:如表

甲(花色)

乙(花色)

紅桃3

紅桃4

黑桃5

紅桃3

同色

同色

不同色

紅桃4

同色

同色

不同色

黑桃5

不同色

不同色

同色

由上表可得

方案B:如表

 甲

紅桃3

紅桃4

黑桃5

紅桃3

3+3=6

3+4=7

3+5=8

紅桃4

4+3=7

4+4=8

4+5=9

黑桃5

5+3=8

5+4=9

5+5=10

由上表可得

因為,所以選擇A方案甲的勝率更高.

【答案】⑴⑵A方案,B方案,故選擇A方案甲的勝率更高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【答案】14。

【考點】軸對稱-最短路線問題;勾股定理;垂徑定理.

【專題】探究型.

【分析】先由MN=20求出⊙O的半徑,再連接OA、OB,由勾股定理得出OD、OC的長,作點B關(guān)于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,在Rt△AB′E中利用勾股定理即可求出AB′的值.

【解答】∵M(jìn)N=20,

∴⊙O的半徑=10,

連接OA、OB,

在Rt△OBD中,OB=10,BD=6,

∴OD==8;

同理,在Rt△AOC中,OA=10,AC=8,

∴OC==6,

∴CD=8+6=14,

作點B關(guān)于MN的對稱點B′,連接AB′,則AB′即為PA+PB的最小值,B′D=BD=6,過點B′作AC的垂線,交AC的延長線于點E,

在Rt△AB′E中,

∵AE=AC+CE=8+6=14,B′E=CD=14,

∴AB′==14

故答案為:14

【點評】本題考查的是軸對稱-最短路線問題、垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.

查看答案和解析>>

同步練習(xí)冊答案