【題目】若關(guān)于x的方程x2+3x+a=0有一個根為﹣1,則a的值為(
A.2
B.﹣1
C.﹣2
D.1

【答案】A
【解析】解:把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0, 解得a=2.
故選A.
根據(jù)一元二次方程的解的定義,把x=﹣1代入方程得到關(guān)于a的一次方程,然后解此一次方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=x+nx軸、y軸分別交于B、C兩點(diǎn),拋物線y=ax2+bx+3(a0)CB兩點(diǎn),交x軸于另一點(diǎn)A,連接AC,且tanCAO=3

(1)求拋物線的解析式;

(2)若點(diǎn)P是射線CB上一點(diǎn),過點(diǎn)Px軸的垂線,垂足為H,交拋物線于Q,設(shè)P點(diǎn)橫坐標(biāo)為t,線段PQ的長為d,求出dt之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;

(3)(2)的條件下,當(dāng)點(diǎn)P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2(m+3)y+(5m22m+13)=0 (m為常數(shù))的兩個實(shí)數(shù)根,點(diǎn)M在拋物線上,連接MQ、MH、PM,且.MP平分QMH,求出t值及點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A10B10C10D10E10F10的邊長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長是方程x2﹣5x+6=0的兩個根,則三角形的第三邊c的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.

(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將y=x2向上平移2個單位后所得到的拋物線的解析式為(
A.y=x2﹣2
B.y=x2+2
C.y=(x﹣2)2
D.y=(x+2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC(BC>AC),ACB=90°,點(diǎn)DAB邊上,DEAC于點(diǎn)E.設(shè)點(diǎn)F在線段EC上,點(diǎn)G在射線CB上,以F,C,G為頂點(diǎn)的三角形與EDC有一個銳角相等,FGCD于點(diǎn)P,問:線段CP可能是CFG的高線還是中線?或兩者都有可能?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的圖象記錄了某地一月份某天的溫度隨時間變化.的情況,請你仔細(xì)觀察圖象回答下面的問題:

(1)20時的溫度是 ,溫度是0℃時的時刻是 時,最暖和的時刻是 時,溫度在-3℃以下的持續(xù)時間為 時;

(2)從圖象中還能獲取哪些信息?(寫出1~2條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校測量了初三(1)班學(xué)生的身高(精確到1cm),按10cm為一段進(jìn)行分組,得到如下頻數(shù)分布直方圖,則下列說法正確的是( 

A. 該班人數(shù)最多的身高段的學(xué)生數(shù)為7人 B. 該班身高最高段的學(xué)生數(shù)為7人

C. 該班身高最高段的學(xué)生數(shù)為20人 D. 該班身高低于160.5cm的學(xué)生數(shù)為15人

查看答案和解析>>

同步練習(xí)冊答案