如圖,有一個邊長為6cm的正三角形,從它的三個角截去三個小等邊三角形后得到一個正六邊形,則正六邊形的邊長為______cm.
∵正三角形的邊長為6cm,
∴3個邊長都相等,
又∵截去三個小等邊三角形,
∴各個小三角形的邊長也相等,
∴正六邊形的邊長為:2.
故答案為:2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

正三角形OAB的頂點O是原點,A點坐標是(-2,0),B點在第二象限,則B點的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,A、B、C三點在同一直線上,分別以AB、BC為邊,在直線AC的同側作等邊△ABC和等邊△BCE,連接AE交BD于點M,連接CD交BE于點N,連接MN得△BMN,試判斷△BMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC是邊長為6cm的等邊三角形,被一平行于BC的矩形所截,AB被截成三等分,則圖中陰影部分的面積為( 。
A.4cm2B.2cm2C.3
3
cm2
D.3cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

附加題,學完“幾何的回顧”一章后,老師布置了一道思考題:
如圖,點M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.求證:∠BQM=60度.
(1)請你完成這道思考題;
(2)做完(1)后,同學們在老師的啟發(fā)下進行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點M,N分別在正三角形ABC的BC,CA邊上”改為“點M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?…
請你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇一個給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知等邊△ABC和等邊△A′B′C′的面積分別為4、9,則△ABC、△A′B′C′的邊長比為( 。
A.4:9B.16:81C.2:3D.3:2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AD是等邊三角形ABC的中線,AE=AD,則∠EDC=(  )度.
A.30B.20C.25D.15

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC是等邊三角形,AD⊥BC,DE⊥AC,若AB=12cm,則CE=______cm.

查看答案和解析>>

同步練習冊答案