【題目】閱讀理解:如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.垂美四邊形有如下性質(zhì):
垂美四邊形的兩組對(duì)邊的平方和相等.
已知:如圖1,四邊形ABCD是垂美四邊形,對(duì)角線AC、BD相交于點(diǎn)E.
求證:AD2+BC2=AB2+CD2
證明:∵四邊形ABCD是垂美四邊形
∴AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2.
拓展探究:
(1)如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)如圖3,在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說明理由;
問題解決:
如圖4,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5.求GE長(zhǎng).
【答案】拓展探究:(1)四邊形ABCD是垂美四邊形,理由詳見解析;(2)四邊形FMAN是矩形,理由詳見解析;問題解決:.
【解析】
(1)根據(jù)垂直平分線的判定定理可得直線AC是線段BD的垂直平分線,進(jìn)而得證;
(2)首先猜想出結(jié)論,根據(jù)垂直的定義可得∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,進(jìn)而證得猜想,將已知代入即可求得CD;
(3)根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合(2)的結(jié)論計(jì)算即可.
拓展探究:(1)四邊形ABCD是垂美四邊形,
理由如下:
∵AB=AD,
∴點(diǎn)A在線段BD的垂直平分線上,
∵CB=CD,
∴點(diǎn)C在線段BD的垂直平分線上,
∴直線AC是線段BD的垂直平分線,
∴AC⊥BD,即四邊形ABCD是垂美四邊形.
(2)四邊形FMAN是矩形,
理由:如圖3,連接AF,
∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),
∴AF=CF=BF,
又∵等腰三角形ABD和等腰三角形ACE,
∴AD=DB、AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四邊形AMFN是矩形;
問題解決:
連接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
∵在△GAB和△CAE中,AG=AC,∠GAB=∠CAE,AB=AE,
∴△GAB≌△CAE,
∴∠ABG=∠AEC,
又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四邊形CGEB是垂美四邊形,
∴CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=,BE=,
∴GE2=CG2+BE2﹣CB2=73,
∴GE=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(k+3)x+=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若方程兩根為x1,x2,那么是否存在實(shí)數(shù)k,使得等式=﹣1成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,則其中結(jié)論正確的個(gè)數(shù)是( 。
A、2個(gè)B、3個(gè)
C、4個(gè)D、5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀探索
問題背景:著名數(shù)學(xué)家華羅庚提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次”談話“的語言.2002年8月在北京召開的國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖注》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖1所示).勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積進(jìn)行了證明.
趙爽證明方法如下:
以a、b為直角邊(b>a),以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于,把這四個(gè)直角三角形拼成如圖1所示形狀.
∵Rt△DAE≌Rt△ABF
∴∠EDA=∠FAB
∵∠EAD+∠EDA=90°
∴∠FAB+∠EAD=90°
∴四邊形ABCD是一個(gè)邊長(zhǎng)為c的正方形,它的面積等于
∵EF=FG=GH=HE=b-a
∠HEF=90°
∴四邊形EFGH是一個(gè)邊長(zhǎng)為b-a的正方形,它的面積等于
∴
∴ 從而證明了勾股定理.
思維拓展:
1、如果大正方形的面積為13,小正方形的面積為1,直角三角形的較短直角邊長(zhǎng)為a,較長(zhǎng)直角邊長(zhǎng)為b,那么的值為 .
2、美國(guó)第二十屆總統(tǒng)加菲爾德也曾經(jīng)給出了勾股定理的一種證明方法,如圖2所示,
他用兩個(gè)全等的直角三角形和一個(gè)等腰直角三角形拼出了一個(gè)直角梯形,請(qǐng)你利用此圖形驗(yàn)證勾股定理.
證明:∵直角梯形ABCD的面積可以用兩種方法表示:
第一種方法表示為:
第二種方法表示為:
∴ =
∴
探索創(chuàng)新:
用紙做成四個(gè)全等的直角三角形,兩直角邊的長(zhǎng)分別為a和b,斜邊長(zhǎng)為c,請(qǐng)你開動(dòng)腦筋,將它們拼成一個(gè)能證明勾股定理的圖形(不同于上面圖1和圖2).請(qǐng)畫出你拼成的圖形,并用你畫的圖形證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更好的了解中學(xué)生課外閱讀的情況,學(xué)校團(tuán)委將初一年級(jí)學(xué)生一學(xué)期閱讀課外書籍量分為A(3本以內(nèi))、B(3——6本)、C(6——10本)、D(10本以上)四種情況進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖所給信息解答上列問題:
(1)在扇形統(tǒng)計(jì)圖中C所占的百分比是多少?
(2)請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校團(tuán)委欲從課外閱讀量在10本以上的同學(xué)中隨機(jī)邀請(qǐng)兩位參加學(xué)校舉辦的“書香致遠(yuǎn) 墨卷至恒”主題讀書日的形象大使,請(qǐng)你用列表法或畫樹狀圖的方法,求所選出的兩位同學(xué)恰好都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為更新果樹品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買B種苗所需費(fèi)用y(元)與購(gòu)買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買計(jì)劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】賽龍舟是端午節(jié)的主要習(xí)俗,某市甲乙兩支龍舟隊(duì)在端午節(jié)期間進(jìn)行劃龍舟比賽,從起點(diǎn)A駛向終點(diǎn)B,在整個(gè)行程中,龍舟離開起點(diǎn)的距離y(米)與時(shí)間x(分鐘)的對(duì)應(yīng)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問題:
(1)起點(diǎn)A與終點(diǎn)B之間相距多遠(yuǎn)?
(2)哪支龍舟隊(duì)先出發(fā)?哪支龍舟隊(duì)先到達(dá)終點(diǎn)?
(3)分別求甲、乙兩支龍舟隊(duì)的y與x函數(shù)關(guān)系式;
(4)甲龍舟隊(duì)出發(fā)多長(zhǎng)時(shí)間時(shí)兩支龍舟隊(duì)相距200米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在4×4的網(wǎng)格中存在線段AB,每格表示一個(gè)單位長(zhǎng)度,并構(gòu)建了平面直角坐標(biāo)系.
(1)直接寫出點(diǎn)A、B的坐標(biāo):A( , ),B( , );
(2)請(qǐng)?jiān)趫D中確定點(diǎn)C(1,﹣2)的位置并連接AC、BC,則△ABC是 三角形(判斷其形狀);
(3)在現(xiàn)在的網(wǎng)格中(包括網(wǎng)格的邊界)存在一點(diǎn)P,點(diǎn)P的橫縱坐標(biāo)為整數(shù)(在格點(diǎn)上),連接PA、PB后得到△PAB為等腰三角形,則滿足條件的點(diǎn)P有 個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com