如圖,在平面直角坐標系中,點A的坐標為(0,3),△OAB沿x軸向左平移后得到△O′A′B′,點A的對應(yīng)點在直線上一點,則點B與其對應(yīng)點B′間的距離為【 】
A. B.3 C.4 D.5
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連結(jié)DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為______cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm²),求S與t的函數(shù)關(guān)系式.
(4)連結(jié)CD.當點N于點D重合時,有一點H從點M出發(fā),在線段MN上以2.5cm/s的速度沿M-N-M連續(xù)做往返運動,直至點P與點E重合時,點H停止往返運動;當點P在線段EB上運動時,點H始終在線段MN的中心處.直接寫出在點P的整個運動過程中,點H落在線段CD上時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,O為坐標原點,點B在x軸的正半軸上,四邊形OACB是平行四邊形,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,OB=,BF=BC。過點F作EF∥OB,交OA于點,點P為直線EF上的一個動點,連接PA,PO。若以P、O、A為頂點的三角形是直角三角形,請求出所有點P的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,AB是⊙O的一條弦,點C是⊙O優(yōu)弧AB上一動點,且∠ACB=45°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為7,則GE+FH的最大值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,一個半徑為r的圓形紙片在邊長為()的等邊三角形內(nèi)任意運動,則在該等邊三角形內(nèi),這個圓形紙片“不能接觸到的部分”的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=5,AD=4.在進行如下操作時遇到了下面的幾個問題,請你幫助解決.
(1)將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2),請你求出AE和FG的長度.
(2)在(1)的條件下,小明先將三角形的邊EG和矩形邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設(shè)G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數(shù)關(guān)系式,并求當重疊部分面積為10時,平移距離x的值(如圖3).
(3)在(2)的操作中,小明發(fā)現(xiàn)在平移過程中,雖然有時平移的距離不等,但兩紙片重疊的面積卻是相等的;而有時候平移的距離不等,兩紙片重疊部分的面積也不可能相等.請?zhí)剿鬟@兩種情況下重疊部分面積y的范圍(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,AB=AC,D是BA延長線上的一點,點E在AC上,且AE=CE。
(1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)字母(保留作圖痕跡,不寫作法)。
①作∠DAC的平分線AM。②連接BE并延長交AM于點F。
(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖是一組密碼的一部分.為了保密,許多情況下可采用不同的密碼,請你運用所學知識找到破譯的“鑰匙”。目前,已破譯出“正做數(shù)學”的真實意思是“祝你成功”。若“正”所處的位置為(x,y),你找到的密碼鑰匙是 ,破譯的“今天考試”真實意思是 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com