【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.
(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?
【答案】
(1)解:∵OC是∠AOD的平分線,
∴∠AOC=∠DOC,
∵OE是∠BOD的平分線,
∴∠BOE=∠DOE,
∴∠COE= ∠AOB=60°
(2)解:∵∠EOC=65°,∠DOC=25°,
∴∠DOE=∠COE﹣∠DOC=65°﹣25°=40°,
∵OC是∠AOD的平分線,
∴∠BOE=∠DOE=40°
【解析】(1)根據(jù)角平分線的定義得出∠AOC=∠DOC,∠BOE=∠DOE,從而證出∠COE=∠AOB,計算即可得出答案。
(2)根據(jù)∠DOE=∠COE﹣∠DOC,求出∠DOE的度數(shù),再根據(jù)角平分線的定義得出∠BOE=∠DOE,即可得出結(jié)果。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說明理由;
(3)在運動過程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅每分鐘踢毽子的次數(shù)正常范圍為少于80次,但不少于50次,用不等式表示為( )
A. 50<x<80; B. 50≤x≤80; C. 50≤x<80; D. 50<x≤80;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解,我們把依次連接任意一個四邊形各邊中點得到的四邊形叫中點四邊形,如圖1,在四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點,依次連接各邊中點得到中點四邊形EFGH.
(1)這個中點四邊形EFGH的形狀是;
(2)如圖2,在四邊形ABCD中,點M在AB上且△AMD和△MCB為等邊三角形,E、F、G、H分別為AB、BC、CD、AD的中點,試判斷四邊形EFGH的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD= AB= CD,線段AB、CD的中點E,F(xiàn)之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】變形與求值
(1)通分: , .
(2)求值: ,其中x=1,y=﹣ .
(3)不改變分式的值,變形使分式 的分子與分母的最高次項的系數(shù)是正數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式a,b,c;
(2)線段AB上有一動點P,過點P作y軸的平行線,交拋物線于點Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點M,使△ABM是以AB為直角邊的直角三角形?如果存在求出點M坐標;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com