【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480km的目的地,乙車比甲車晚出發(fā)2h(從甲車出發(fā)時開始計時).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(km)與時間x(h)之間的函數(shù)關(guān)系對應(yīng)的圖象(線段AB表示甲車出發(fā)不足2h因故障停車檢修).請根據(jù)圖象所提供的信息,解決以下問題:

(1)求乙車所行路程y與時間x之間的函數(shù)關(guān)系式;

(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;

(3)乙車出發(fā)多長時間,兩車在途中第一次相遇.(寫出解題過程)

【答案】(1)y與x的函數(shù)關(guān)系式為y=60x﹣120;(2)兩車在途中第二次相遇時,它們距出發(fā)地的路程為240千米;(3)乙車出發(fā)3﹣2=1小時,兩車在途中第一次相遇

【解析】分析:(1)由圖可看出,乙車所行路程y與時間x的成一次函數(shù),使用待定系數(shù)法可求得一次函數(shù)關(guān)系式;

(2)由圖可得,交點F表示第二次相遇,F點橫坐標為6,代入(1)中的函數(shù)即可求得距出發(fā)地的路程;

(3)交點P表示第一次相遇,即甲車故障停車檢修時相遇,點P的橫坐標表示時間,縱坐標表示離出發(fā)地的距離,要求時間,則需要把點P的縱坐標先求出;從圖中看出,點P的縱坐標與點B的縱坐標相等,而點B在線段BC上,BC對應(yīng)的函數(shù)關(guān)系可通過待定系數(shù)法求解,點B的橫坐標已知,則縱坐標可求.

詳解:(1)設(shè)乙車所行路程y與時間x的函數(shù)關(guān)系式為y=k1x+b1,

把(2,0)和(10,480)代入,

,解得,

yx的函數(shù)關(guān)系式為y=60x-120;

(2)由圖可得,交點F表示第二次相遇,

F點橫坐標為6,此時y=60×6-120=240,

F點坐標為(6,240),

∴兩車在途中第二次相遇時,它們距出發(fā)地的路程為240千米;

(3)設(shè)線段BC對應(yīng)的函數(shù)關(guān)系式為y=k2x+b2

把(6,240)、(8,480)代入,

,

解得,

yx的函數(shù)關(guān)系式為y=120x-480,

∴當x=4.5時,y=120×4.5-480=60.

∴點B的縱坐標為60,

AB表示因故停車檢修,

∴交點P的縱坐標為60,

y=60代入y=60x-120中,

60=60x-120,

解得x=3,

∴交點P的坐標為(3,60),

∵交點P表示第一次相遇,

∴乙車出發(fā)3-2=1小時,兩車在途中第一次相遇.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在AD的延長線上,下列條件中能判斷AB∥CD的是( )

A.∠C=∠CDEB.∠ABD=∠CBDC.∠ABD=∠CDBD.∠C+∠ADC=180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上對應(yīng)的數(shù)為x,點B對應(yīng)的數(shù)為y,且點O為數(shù)軸上的原點,且.

1)點A對應(yīng)的數(shù)為______;點B對應(yīng)的數(shù)為______;線段的長度為_______;

2)若數(shù)軸上有一點C,且,求點C在數(shù)軸上對應(yīng)的數(shù);

3)若點PA點出發(fā)沿數(shù)軸的正方向以每秒2個單位的速度運動,同時Q點從B點出發(fā)沿數(shù)軸的負方向以每秒4個單位長度的速度運動,運動時間為t秒,當時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,BC,D為四家超市,其中超市DA,B,C三家超市的路程分別為25km10km,5km.現(xiàn)計劃在A,D之間的道路上建一個配貨中心P,為避免交通擁堵,配貨中心與超市之間的距離不少于2km.假設(shè)一輛貨車每天從P出發(fā)為這四家超市送貨各1次,由于貨車每次僅能給一家超市送貨,因此每次送貨后均要返回配貨中心P,重新裝貨后再前往其他超市.設(shè)PA的路程為xkm,這輛貨車每天行駛的路程為ykm

1)求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

2)直接寫出配貨中心P建在什么位置,這輛貨車每天行駛的路程最短?最短路程是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E、F分別在線段AD及其延長線上,且DE=DF,給出下列條件:①BE⊥EC;②AB=AC;③BF∥EC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是_______(只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會干部對校學生會倡導的助殘自愿捐款活動進行抽樣調(diào)查,得到一組學生捐款情況的數(shù)據(jù),下圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形高度之比為3:4:5:8:2,又知此次調(diào)查中捐20元的人數(shù)為24人,

(1)他們一共抽查了多少人?捐款數(shù)不少于20元的概率是多少?

(2)這組數(shù)據(jù)的眾數(shù)是   (元)、中位數(shù)是   (元);

(3)若該校共有660名學生,請估算全校學生共捐款多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)12,3,4,x的平均數(shù)與中位數(shù)相同,則實數(shù)x的值不可能( )

A. 0 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學生中,隨機抽取部分學生進行問卷調(diào)查(每名學生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生共有   人,并補全條形統(tǒng)計圖;

(2)在扇形統(tǒng)計圖中,m= ,n=   ,表示區(qū)域C的圓心角為  度;

(3)全校學生中喜歡籃球的人數(shù)大約有

查看答案和解析>>

同步練習冊答案